Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
⊢ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) |
2 |
1
|
rnssi |
⊢ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ran ( 𝐴 × 𝐵 ) |
3 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
4 |
2 3
|
sstri |
⊢ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝐵 |
5 |
|
eqss |
⊢ ( ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ↔ ( ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ) ) |
6 |
4 5
|
mpbiran |
⊢ ( ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ) |
7 |
|
inxpssres |
⊢ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐶 ↾ 𝐴 ) |
8 |
7
|
rnssi |
⊢ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ran ( 𝐶 ↾ 𝐴 ) |
9 |
|
sstr |
⊢ ( ( 𝐵 ⊆ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ∧ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ran ( 𝐶 ↾ 𝐴 ) ) → 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) → 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) ) |
11 |
|
ssel |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ran ( 𝐶 ↾ 𝐴 ) ) ) |
12 |
|
vex |
⊢ 𝑦 ∈ V |
13 |
12
|
elrn2 |
⊢ ( 𝑦 ∈ ran ( 𝐶 ↾ 𝐴 ) ↔ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) |
14 |
11 13
|
syl6ib |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ) |
15 |
14
|
ancld |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ) ) |
16 |
12
|
elrn2 |
⊢ ( 𝑦 ∈ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ) |
17 |
|
opelinxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐶 ) ) |
18 |
12
|
opelresi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐶 ) ) |
19 |
18
|
bianassc |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐶 ) ) |
20 |
17 19
|
bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ) |
21 |
20
|
exbii |
⊢ ( ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ) |
22 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ) |
23 |
16 21 22
|
3bitri |
⊢ ( 𝑦 ∈ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 ↾ 𝐴 ) ) ) |
24 |
15 23
|
syl6ibr |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ) ) |
25 |
24
|
ssrdv |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) → 𝐵 ⊆ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ) |
26 |
10 25
|
impbii |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) ↔ 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) ) |
27 |
6 26
|
bitr2i |
⊢ ( 𝐵 ⊆ ran ( 𝐶 ↾ 𝐴 ) ↔ ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |