Metamath Proof Explorer


Theorem sssn

Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion sssn ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )
2 ssel ( 𝐴 ⊆ { 𝐵 } → ( 𝑥𝐴𝑥 ∈ { 𝐵 } ) )
3 elsni ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 )
4 2 3 syl6 ( 𝐴 ⊆ { 𝐵 } → ( 𝑥𝐴𝑥 = 𝐵 ) )
5 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐴𝐵𝐴 ) )
6 4 5 syl6 ( 𝐴 ⊆ { 𝐵 } → ( 𝑥𝐴 → ( 𝑥𝐴𝐵𝐴 ) ) )
7 6 ibd ( 𝐴 ⊆ { 𝐵 } → ( 𝑥𝐴𝐵𝐴 ) )
8 7 exlimdv ( 𝐴 ⊆ { 𝐵 } → ( ∃ 𝑥 𝑥𝐴𝐵𝐴 ) )
9 1 8 syl5bi ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → 𝐵𝐴 ) )
10 snssi ( 𝐵𝐴 → { 𝐵 } ⊆ 𝐴 )
11 9 10 syl6 ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → { 𝐵 } ⊆ 𝐴 ) )
12 11 anc2li ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → ( 𝐴 ⊆ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) ) )
13 eqss ( 𝐴 = { 𝐵 } ↔ ( 𝐴 ⊆ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) )
14 12 13 syl6ibr ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → 𝐴 = { 𝐵 } ) )
15 14 orrd ( 𝐴 ⊆ { 𝐵 } → ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) )
16 0ss ∅ ⊆ { 𝐵 }
17 sseq1 ( 𝐴 = ∅ → ( 𝐴 ⊆ { 𝐵 } ↔ ∅ ⊆ { 𝐵 } ) )
18 16 17 mpbiri ( 𝐴 = ∅ → 𝐴 ⊆ { 𝐵 } )
19 eqimss ( 𝐴 = { 𝐵 } → 𝐴 ⊆ { 𝐵 } )
20 18 19 jaoi ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) → 𝐴 ⊆ { 𝐵 } )
21 15 20 impbii ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) )