Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
2 |
|
ssel |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ { 𝐵 } ) ) |
3 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝐵 } → 𝑥 = 𝐵 ) |
4 |
2 3
|
syl6 |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → 𝑥 = 𝐵 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
6 |
4 5
|
syl6 |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) ) |
7 |
6
|
ibd |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
8 |
7
|
exlimdv |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐴 ) ) |
9 |
1 8
|
syl5bi |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → 𝐵 ∈ 𝐴 ) ) |
10 |
|
snssi |
⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) |
11 |
9 10
|
syl6 |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → { 𝐵 } ⊆ 𝐴 ) ) |
12 |
11
|
anc2li |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → ( 𝐴 ⊆ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) ) ) |
13 |
|
eqss |
⊢ ( 𝐴 = { 𝐵 } ↔ ( 𝐴 ⊆ { 𝐵 } ∧ { 𝐵 } ⊆ 𝐴 ) ) |
14 |
12 13
|
syl6ibr |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( ¬ 𝐴 = ∅ → 𝐴 = { 𝐵 } ) ) |
15 |
14
|
orrd |
⊢ ( 𝐴 ⊆ { 𝐵 } → ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |
16 |
|
0ss |
⊢ ∅ ⊆ { 𝐵 } |
17 |
|
sseq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ⊆ { 𝐵 } ↔ ∅ ⊆ { 𝐵 } ) ) |
18 |
16 17
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ⊆ { 𝐵 } ) |
19 |
|
eqimss |
⊢ ( 𝐴 = { 𝐵 } → 𝐴 ⊆ { 𝐵 } ) |
20 |
18 19
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) → 𝐴 ⊆ { 𝐵 } ) |
21 |
15 20
|
impbii |
⊢ ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) ) |