Metamath Proof Explorer
Description: A topology finer than a T_0 topology is T_0. (Contributed by Mario
Carneiro, 25-Aug-2015)
|
|
Ref |
Expression |
|
Hypothesis |
t1sep.1 |
⊢ 𝑋 = ∪ 𝐽 |
|
Assertion |
sst0 |
⊢ ( ( 𝐽 ∈ Kol2 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ Kol2 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
t1sep.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
t0top |
⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top ) |
3 |
|
cnt0 |
⊢ ( ( 𝐽 ∈ Kol2 ∧ ( I ↾ 𝑋 ) : 𝑋 –1-1→ 𝑋 ∧ ( I ↾ 𝑋 ) ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ Kol2 ) |
4 |
1 2 3
|
sshauslem |
⊢ ( ( 𝐽 ∈ Kol2 ∧ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ⊆ 𝐾 ) → 𝐾 ∈ Kol2 ) |