Step |
Hyp |
Ref |
Expression |
1 |
|
sstotbnd.2 |
⊢ 𝑁 = ( 𝑀 ↾ ( 𝑌 × 𝑌 ) ) |
2 |
1
|
sstotbnd2 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
3 |
|
elfpw |
⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑢 ⊆ 𝑋 ∧ 𝑢 ∈ Fin ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑢 ∈ Fin ) |
5 |
|
mptfi |
⊢ ( 𝑢 ∈ Fin → ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
6 |
|
rnfi |
⊢ ( ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
7 |
4 5 6
|
3syl |
⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
8 |
7
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ) |
9 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
11 |
10
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) = { 𝑏 ∣ ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } |
12 |
3
|
simplbi |
⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑢 ⊆ 𝑋 ) |
13 |
|
ssrexv |
⊢ ( 𝑢 ⊆ 𝑋 → ( ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
15 |
14
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ( ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
16 |
15
|
ss2abdv |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → { 𝑏 ∣ ∃ 𝑥 ∈ 𝑢 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
17 |
11 16
|
eqsstrid |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) |
18 |
|
unieq |
⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∪ 𝑣 = ∪ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
19 |
|
ovex |
⊢ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∈ V |
20 |
19
|
dfiun3 |
⊢ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
21 |
18 20
|
eqtr4di |
⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∪ 𝑣 = ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
22 |
21
|
sseq2d |
⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑌 ⊆ ∪ 𝑣 ↔ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
23 |
|
ssabral |
⊢ ( 𝑣 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
24 |
|
sseq1 |
⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑣 ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ↔ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) |
25 |
23 24
|
bitr3id |
⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) |
26 |
22 25
|
anbi12d |
⊢ ( 𝑣 = ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ↔ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) ) |
27 |
26
|
rspcev |
⊢ ( ( ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ∧ ran ( 𝑥 ∈ 𝑢 ↦ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ⊆ { 𝑏 ∣ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) } ) ) → ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
28 |
8 9 17 27
|
syl12anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
29 |
28
|
rexlimdvaa |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) → ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
30 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
32 |
31
|
ac6sfi |
⊢ ( ( 𝑣 ∈ Fin ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑓 ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
33 |
32
|
adantrl |
⊢ ( ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
35 |
|
frn |
⊢ ( 𝑓 : 𝑣 ⟶ 𝑋 → ran 𝑓 ⊆ 𝑋 ) |
36 |
35
|
ad2antrl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran 𝑓 ⊆ 𝑋 ) |
37 |
|
simplrl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑣 ∈ Fin ) |
38 |
|
ffn |
⊢ ( 𝑓 : 𝑣 ⟶ 𝑋 → 𝑓 Fn 𝑣 ) |
39 |
38
|
ad2antrl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑓 Fn 𝑣 ) |
40 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝑣 ↔ 𝑓 : 𝑣 –onto→ ran 𝑓 ) |
41 |
39 40
|
sylib |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑓 : 𝑣 –onto→ ran 𝑓 ) |
42 |
|
fofi |
⊢ ( ( 𝑣 ∈ Fin ∧ 𝑓 : 𝑣 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
43 |
37 41 42
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran 𝑓 ∈ Fin ) |
44 |
|
elfpw |
⊢ ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin ) ) |
45 |
36 43 44
|
sylanbrc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
46 |
|
simprrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → 𝑌 ⊆ ∪ 𝑣 ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑣 ) |
48 |
|
uniiun |
⊢ ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 𝑏 |
49 |
|
iuneq2 |
⊢ ( ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) → ∪ 𝑏 ∈ 𝑣 𝑏 = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
50 |
48 49
|
syl5eq |
⊢ ( ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) → ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
51 |
50
|
ad2antll |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∪ 𝑣 = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
52 |
47 51
|
sseqtrd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
53 |
30
|
eleq2d |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑏 ) → ( 𝑦 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑦 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
54 |
53
|
rexrn |
⊢ ( 𝑓 Fn 𝑣 → ( ∃ 𝑥 ∈ ran 𝑓 𝑦 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑣 𝑦 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
55 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑥 ∈ ran 𝑓 𝑦 ∈ ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
56 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑏 ∈ 𝑣 𝑦 ∈ ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
57 |
54 55 56
|
3bitr4g |
⊢ ( 𝑓 Fn 𝑣 → ( 𝑦 ∈ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑦 ∈ ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
58 |
57
|
eqrdv |
⊢ ( 𝑓 Fn 𝑣 → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
59 |
39 58
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑏 ∈ 𝑣 ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) |
60 |
52 59
|
sseqtrrd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
61 |
|
iuneq1 |
⊢ ( 𝑢 = ran 𝑓 → ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
62 |
61
|
sseq2d |
⊢ ( 𝑢 = ran 𝑓 → ( 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑌 ⊆ ∪ 𝑥 ∈ ran 𝑓 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
64 |
45 60 63
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ∧ ( 𝑓 : 𝑣 ⟶ 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 𝑏 = ( ( 𝑓 ‘ 𝑏 ) ( ball ‘ 𝑀 ) 𝑑 ) ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
65 |
34 64
|
exlimddv |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) ∧ ( 𝑣 ∈ Fin ∧ ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
66 |
65
|
rexlimdvaa |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
67 |
29 66
|
impbid |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
68 |
67
|
ralbidv |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑢 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑌 ⊆ ∪ 𝑥 ∈ 𝑢 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
69 |
2 68
|
bitrd |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑁 ∈ ( TotBnd ‘ 𝑌 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑌 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |