Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sstrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| sstrd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | sstrd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
| 3 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |