| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 2 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 3 | 2 | onirri | ⊢ ¬  1o  ∈  1o | 
						
							| 4 |  | eldif | ⊢ ( 1o  ∈  ( ω  ∖  1o )  ↔  ( 1o  ∈  ω  ∧  ¬  1o  ∈  1o ) ) | 
						
							| 5 | 1 3 4 | mpbir2an | ⊢ 1o  ∈  ( ω  ∖  1o ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 8 | 6 7 | ifex | ⊢ if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 )  ∈  V | 
						
							| 9 |  | eqid | ⊢ ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) | 
						
							| 10 | 8 9 | fnmpti | ⊢ ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  Fn  suc  1o | 
						
							| 11 |  | eqid | ⊢ 𝑥  =  𝑥 | 
						
							| 12 |  | eqid | ⊢ 𝑦  =  𝑦 | 
						
							| 13 | 11 12 | pm3.2i | ⊢ ( 𝑥  =  𝑥  ∧  𝑦  =  𝑦 ) | 
						
							| 14 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 15 | 14 | sucex | ⊢ suc  1o  ∈  V | 
						
							| 16 | 15 | mptex | ⊢ ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  ∈  V | 
						
							| 17 |  | fneq1 | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( 𝑓  Fn  suc  1o  ↔  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  Fn  suc  1o ) ) | 
						
							| 18 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( 𝑓 ‘ ∅ )  =  ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ ∅ ) ) | 
						
							| 19 | 2 | onordi | ⊢ Ord  1o | 
						
							| 20 |  | 0elsuc | ⊢ ( Ord  1o  →  ∅  ∈  suc  1o ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ∅  ∈  suc  1o | 
						
							| 22 |  | iftrue | ⊢ ( 𝑚  =  ∅  →  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 )  =  𝑥 ) | 
						
							| 23 | 22 9 6 | fvmpt | ⊢ ( ∅  ∈  suc  1o  →  ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ ∅ )  =  𝑥 ) | 
						
							| 24 | 21 23 | ax-mp | ⊢ ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ ∅ )  =  𝑥 | 
						
							| 25 | 18 24 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( 𝑓 ‘ ∅ )  =  𝑥 ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( ( 𝑓 ‘ ∅ )  =  𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( 𝑓 ‘ 1o )  =  ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ 1o ) ) | 
						
							| 28 | 14 | sucid | ⊢ 1o  ∈  suc  1o | 
						
							| 29 |  | eqeq1 | ⊢ ( 𝑚  =  1o  →  ( 𝑚  =  ∅  ↔  1o  =  ∅ ) ) | 
						
							| 30 | 29 | ifbid | ⊢ ( 𝑚  =  1o  →  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 )  =  if ( 1o  =  ∅ ,  𝑥 ,  𝑦 ) ) | 
						
							| 31 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 32 | 31 | neii | ⊢ ¬  1o  =  ∅ | 
						
							| 33 | 32 | iffalsei | ⊢ if ( 1o  =  ∅ ,  𝑥 ,  𝑦 )  =  𝑦 | 
						
							| 34 | 33 7 | eqeltri | ⊢ if ( 1o  =  ∅ ,  𝑥 ,  𝑦 )  ∈  V | 
						
							| 35 | 30 9 34 | fvmpt | ⊢ ( 1o  ∈  suc  1o  →  ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ 1o )  =  if ( 1o  =  ∅ ,  𝑥 ,  𝑦 ) ) | 
						
							| 36 | 28 35 | ax-mp | ⊢ ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ 1o )  =  if ( 1o  =  ∅ ,  𝑥 ,  𝑦 ) | 
						
							| 37 | 36 33 | eqtri | ⊢ ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) ) ‘ 1o )  =  𝑦 | 
						
							| 38 | 27 37 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( 𝑓 ‘ 1o )  =  𝑦 ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( ( 𝑓 ‘ 1o )  =  𝑦  ↔  𝑦  =  𝑦 ) ) | 
						
							| 40 | 26 39 | anbi12d | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ↔  ( 𝑥  =  𝑥  ∧  𝑦  =  𝑦 ) ) ) | 
						
							| 41 | 25 38 | breq12d | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o )  ↔  𝑥 𝑅 𝑦 ) ) | 
						
							| 42 | 17 40 41 | 3anbi123d | ⊢ ( 𝑓  =  ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  →  ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ∧  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) )  ↔  ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  Fn  suc  1o  ∧  ( 𝑥  =  𝑥  ∧  𝑦  =  𝑦 )  ∧  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 43 | 16 42 | spcev | ⊢ ( ( ( 𝑚  ∈  suc  1o  ↦  if ( 𝑚  =  ∅ ,  𝑥 ,  𝑦 ) )  Fn  suc  1o  ∧  ( 𝑥  =  𝑥  ∧  𝑦  =  𝑦 )  ∧  𝑥 𝑅 𝑦 )  →  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ∧  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) | 
						
							| 44 | 10 13 43 | mp3an12 | ⊢ ( 𝑥 𝑅 𝑦  →  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ∧  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) | 
						
							| 45 |  | suceq | ⊢ ( 𝑛  =  1o  →  suc  𝑛  =  suc  1o ) | 
						
							| 46 | 45 | fneq2d | ⊢ ( 𝑛  =  1o  →  ( 𝑓  Fn  suc  𝑛  ↔  𝑓  Fn  suc  1o ) ) | 
						
							| 47 |  | fveqeq2 | ⊢ ( 𝑛  =  1o  →  ( ( 𝑓 ‘ 𝑛 )  =  𝑦  ↔  ( 𝑓 ‘ 1o )  =  𝑦 ) ) | 
						
							| 48 | 47 | anbi2d | ⊢ ( 𝑛  =  1o  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 ) ) ) | 
						
							| 49 |  | raleq | ⊢ ( 𝑛  =  1o  →  ( ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ∀ 𝑚  ∈  1o ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) ) | 
						
							| 50 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 51 | 50 | raleqi | ⊢ ( ∀ 𝑚  ∈  1o ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ∀ 𝑚  ∈  { ∅ } ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) | 
						
							| 52 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 53 |  | fveq2 | ⊢ ( 𝑚  =  ∅  →  ( 𝑓 ‘ 𝑚 )  =  ( 𝑓 ‘ ∅ ) ) | 
						
							| 54 |  | suceq | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  suc  ∅ ) | 
						
							| 55 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 56 | 54 55 | eqtr4di | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  1o ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝑚  =  ∅  →  ( 𝑓 ‘ suc  𝑚 )  =  ( 𝑓 ‘ 1o ) ) | 
						
							| 58 | 53 57 | breq12d | ⊢ ( 𝑚  =  ∅  →  ( ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) | 
						
							| 59 | 52 58 | ralsn | ⊢ ( ∀ 𝑚  ∈  { ∅ } ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) | 
						
							| 60 | 51 59 | bitri | ⊢ ( ∀ 𝑚  ∈  1o ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) | 
						
							| 61 | 49 60 | bitrdi | ⊢ ( 𝑛  =  1o  →  ( ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) | 
						
							| 62 | 46 48 61 | 3anbi123d | ⊢ ( 𝑛  =  1o  →  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) )  ↔  ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ∧  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) | 
						
							| 63 | 62 | exbidv | ⊢ ( 𝑛  =  1o  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ∧  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) ) ) | 
						
							| 64 | 63 | rspcev | ⊢ ( ( 1o  ∈  ( ω  ∖  1o )  ∧  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 1o )  =  𝑦 )  ∧  ( 𝑓 ‘ ∅ ) 𝑅 ( 𝑓 ‘ 1o ) ) )  →  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) ) | 
						
							| 65 | 5 44 64 | sylancr | ⊢ ( 𝑥 𝑅 𝑦  →  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) ) | 
						
							| 66 |  | df-br | ⊢ ( 𝑥 𝑅 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  𝑅 ) | 
						
							| 67 |  | brttrcl | ⊢ ( 𝑥 t++ 𝑅 𝑦  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) ) | 
						
							| 68 |  | df-br | ⊢ ( 𝑥 t++ 𝑅 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) | 
						
							| 69 | 67 68 | bitr3i | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) )  ↔  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) | 
						
							| 70 | 65 66 69 | 3imtr3i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) | 
						
							| 71 | 70 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) | 
						
							| 72 |  | ssrel | ⊢ ( Rel  𝑅  →  ( 𝑅  ⊆  t++ 𝑅  ↔  ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 ,  𝑦 〉  ∈  𝑅  →  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) ) ) | 
						
							| 73 | 71 72 | mpbiri | ⊢ ( Rel  𝑅  →  𝑅  ⊆  t++ 𝑅 ) |