Description: Subclass relationship for union of classes. Theorem 25 of Suppes p. 27. (Contributed by NM, 5-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 2 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | sylibr | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ) | 
| 4 | 3 | ssriv | ⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |