Metamath Proof Explorer


Theorem ssun3

Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993)

Ref Expression
Assertion ssun3 ( 𝐴𝐵𝐴 ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssun1 𝐵 ⊆ ( 𝐵𝐶 )
2 sstr2 ( 𝐴𝐵 → ( 𝐵 ⊆ ( 𝐵𝐶 ) → 𝐴 ⊆ ( 𝐵𝐶 ) ) )
3 1 2 mpi ( 𝐴𝐵𝐴 ⊆ ( 𝐵𝐶 ) )