Metamath Proof Explorer


Theorem ssun4

Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion ssun4 ( 𝐴𝐵𝐴 ⊆ ( 𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssun2 𝐵 ⊆ ( 𝐶𝐵 )
2 sstr2 ( 𝐴𝐵 → ( 𝐵 ⊆ ( 𝐶𝐵 ) → 𝐴 ⊆ ( 𝐶𝐵 ) ) )
3 1 2 mpi ( 𝐴𝐵𝐴 ⊆ ( 𝐶𝐵 ) )