| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm5.6 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 2 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 3 |
2
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 4 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) |
| 5 |
4
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 6 |
1 3 5
|
3bitr4ri |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 8 |
|
df-ss |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ) |
| 9 |
|
df-ss |
⊢ ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑥 ∈ 𝐶 ) ) |
| 10 |
7 8 9
|
3bitr4i |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐶 ) |