Metamath Proof Explorer


Theorem ssundif

Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007)

Ref Expression
Assertion ssundif ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ) ⊆ 𝐶 )

Proof

Step Hyp Ref Expression
1 pm5.6 ( ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) → 𝑥𝐶 ) ↔ ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) )
2 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
3 2 imbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥𝐶 ) ↔ ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) → 𝑥𝐶 ) )
4 elun ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
5 4 imbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐶 ) ) )
6 1 3 5 3bitr4ri ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥𝐶 ) )
7 6 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥𝐶 ) )
8 dfss2 ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ∀ 𝑥 ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) )
9 dfss2 ( ( 𝐴𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥𝐶 ) )
10 7 8 9 3bitr4i ( 𝐴 ⊆ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵 ) ⊆ 𝐶 )