Description: Relationship implying union. (Contributed by NM, 10-Nov-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | ssunieq | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 ) → 𝐴 = ∪ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵 ) | |
2 | unissb | ⊢ ( ∪ 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 ) | |
3 | 2 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴 ) |
4 | 1 3 | anim12i | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 ) → ( 𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴 ) ) |
5 | eqss | ⊢ ( 𝐴 = ∪ 𝐵 ↔ ( 𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴 ) ) | |
6 | 4 5 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 ) → 𝐴 = ∪ 𝐵 ) |