Metamath Proof Explorer


Theorem ssunieq

Description: Relationship implying union. (Contributed by NM, 10-Nov-1999)

Ref Expression
Assertion ssunieq ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝑥𝐴 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 elssuni ( 𝐴𝐵𝐴 𝐵 )
2 unissb ( 𝐵𝐴 ↔ ∀ 𝑥𝐵 𝑥𝐴 )
3 2 biimpri ( ∀ 𝑥𝐵 𝑥𝐴 𝐵𝐴 )
4 1 3 anim12i ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝑥𝐴 ) → ( 𝐴 𝐵 𝐵𝐴 ) )
5 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴 𝐵 𝐵𝐴 ) )
6 4 5 sylibr ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝑥𝐴 ) → 𝐴 = 𝐵 )