Metamath Proof Explorer


Theorem ssuniint

Description: Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses ssuniint.x 𝑥 𝜑
ssuniint.a ( 𝜑𝐴𝑉 )
ssuniint.b ( ( 𝜑𝑥𝐵 ) → 𝐴𝑥 )
Assertion ssuniint ( 𝜑𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 ssuniint.x 𝑥 𝜑
2 ssuniint.a ( 𝜑𝐴𝑉 )
3 ssuniint.b ( ( 𝜑𝑥𝐵 ) → 𝐴𝑥 )
4 1 2 3 elintd ( 𝜑𝐴 𝐵 )
5 elssuni ( 𝐴 𝐵𝐴 𝐵 )
6 4 5 syl ( 𝜑𝐴 𝐵 )