Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
⊢ { 𝐶 , 𝐷 } = ( { 𝐶 } ∪ { 𝐷 } ) |
2 |
1
|
uneq2i |
⊢ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) = ( 𝐵 ∪ ( { 𝐶 } ∪ { 𝐷 } ) ) |
3 |
|
unass |
⊢ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) = ( 𝐵 ∪ ( { 𝐶 } ∪ { 𝐷 } ) ) |
4 |
2 3
|
eqtr4i |
⊢ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) = ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) |
5 |
4
|
sseq2i |
⊢ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ↔ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ) |
7 |
|
ssunsn2 |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ) ) |
8 |
|
ssunsn |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) |
9 |
|
un23 |
⊢ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) |
10 |
9
|
sseq2i |
⊢ ( 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ↔ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) |
11 |
10
|
anbi2i |
⊢ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ) |
12 |
|
ssunsn |
⊢ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ↔ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ) |
13 |
4 9
|
eqtr2i |
⊢ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) |
14 |
13
|
eqeq2i |
⊢ ( 𝐴 = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ↔ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) |
15 |
14
|
orbi2i |
⊢ ( ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ↔ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) |
16 |
11 12 15
|
3bitri |
⊢ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ↔ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) |
17 |
8 16
|
orbi12i |
⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) ) |
18 |
6 7 17
|
3bitri |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) ) |