| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssunsn2 | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 )  ∨  ( ( 𝐵  ∪  { 𝐶 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) ) ) ) | 
						
							| 2 |  | ancom | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 )  ↔  ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐴 ) ) | 
						
							| 3 |  | eqss | ⊢ ( 𝐴  =  𝐵  ↔  ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐴 ) ) | 
						
							| 4 | 2 3 | bitr4i | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 )  ↔  𝐴  =  𝐵 ) | 
						
							| 5 |  | ancom | ⊢ ( ( ( 𝐵  ∪  { 𝐶 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) )  ↔  ( 𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } )  ∧  ( 𝐵  ∪  { 𝐶 } )  ⊆  𝐴 ) ) | 
						
							| 6 |  | eqss | ⊢ ( 𝐴  =  ( 𝐵  ∪  { 𝐶 } )  ↔  ( 𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } )  ∧  ( 𝐵  ∪  { 𝐶 } )  ⊆  𝐴 ) ) | 
						
							| 7 | 5 6 | bitr4i | ⊢ ( ( ( 𝐵  ∪  { 𝐶 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) )  ↔  𝐴  =  ( 𝐵  ∪  { 𝐶 } ) ) | 
						
							| 8 | 4 7 | orbi12i | ⊢ ( ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 )  ∨  ( ( 𝐵  ∪  { 𝐶 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) ) )  ↔  ( 𝐴  =  𝐵  ∨  𝐴  =  ( 𝐵  ∪  { 𝐶 } ) ) ) | 
						
							| 9 | 1 8 | bitri | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐵  ∪  { 𝐶 } ) )  ↔  ( 𝐴  =  𝐵  ∨  𝐴  =  ( 𝐵  ∪  { 𝐶 } ) ) ) |