Metamath Proof Explorer


Theorem ssunsn

Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)

Ref Expression
Assertion ssunsn ( ( 𝐵𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) )

Proof

Step Hyp Ref Expression
1 ssunsn2 ( ( 𝐵𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( ( 𝐵𝐴𝐴𝐵 ) ∨ ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) )
2 ancom ( ( 𝐵𝐴𝐴𝐵 ) ↔ ( 𝐴𝐵𝐵𝐴 ) )
3 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
4 2 3 bitr4i ( ( 𝐵𝐴𝐴𝐵 ) ↔ 𝐴 = 𝐵 )
5 ancom ( ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ∧ ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ) )
6 eqss ( 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ∧ ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ) )
7 5 6 bitr4i ( ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) )
8 4 7 orbi12i ( ( ( 𝐵𝐴𝐴𝐵 ) ∨ ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) ↔ ( 𝐴 = 𝐵𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) )
9 1 8 bitri ( ( 𝐵𝐴𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) )