| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snssi | ⊢ ( 𝐷  ∈  𝐴  →  { 𝐷 }  ⊆  𝐴 ) | 
						
							| 2 |  | unss | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  { 𝐷 }  ⊆  𝐴 )  ↔  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) | 
						
							| 3 | 2 | bicomi | ⊢ ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ↔  ( 𝐵  ⊆  𝐴  ∧  { 𝐷 }  ⊆  𝐴 ) ) | 
						
							| 4 | 3 | rbaibr | ⊢ ( { 𝐷 }  ⊆  𝐴  →  ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝐷  ∈  𝐴  →  ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) ) | 
						
							| 6 | 5 | anbi1d | ⊢ ( 𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) | 
						
							| 7 | 2 | biimpi | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  { 𝐷 }  ⊆  𝐴 )  →  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) | 
						
							| 8 | 7 | expcom | ⊢ ( { 𝐷 }  ⊆  𝐴  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝐷  ∈  𝐴  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴 ) ) | 
						
							| 10 |  | ssun3 | ⊢ ( 𝐴  ⊆  𝐶  →  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐷  ∈  𝐴  →  ( 𝐴  ⊆  𝐶  →  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) | 
						
							| 12 | 9 11 | anim12d | ⊢ ( 𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  →  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) | 
						
							| 13 |  | pm4.72 | ⊢ ( ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  →  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) )  ↔  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( 𝐷  ∈  𝐴  →  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) ) | 
						
							| 15 | 6 14 | bitrd | ⊢ ( 𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) ) | 
						
							| 16 |  | uncom | ⊢ ( { 𝐷 }  ∪  𝐶 )  =  ( 𝐶  ∪  { 𝐷 } ) | 
						
							| 17 | 16 | sseq2i | ⊢ ( 𝐴  ⊆  ( { 𝐷 }  ∪  𝐶 )  ↔  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) | 
						
							| 18 |  | ssundif | ⊢ ( 𝐴  ⊆  ( { 𝐷 }  ∪  𝐶 )  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 ) | 
						
							| 19 | 17 18 | bitr3i | ⊢ ( 𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } )  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 ) | 
						
							| 20 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝐷 } )  =  ∅  ↔  ¬  𝐷  ∈  𝐴 ) | 
						
							| 21 |  | disj3 | ⊢ ( ( 𝐴  ∩  { 𝐷 } )  =  ∅  ↔  𝐴  =  ( 𝐴  ∖  { 𝐷 } ) ) | 
						
							| 22 | 20 21 | bitr3i | ⊢ ( ¬  𝐷  ∈  𝐴  ↔  𝐴  =  ( 𝐴  ∖  { 𝐷 } ) ) | 
						
							| 23 |  | sseq1 | ⊢ ( 𝐴  =  ( 𝐴  ∖  { 𝐷 } )  →  ( 𝐴  ⊆  𝐶  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 ) ) | 
						
							| 24 | 22 23 | sylbi | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( 𝐴  ⊆  𝐶  ↔  ( 𝐴  ∖  { 𝐷 } )  ⊆  𝐶 ) ) | 
						
							| 25 | 19 24 | bitr4id | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( 𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } )  ↔  𝐴  ⊆  𝐶 ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) ) | 
						
							| 27 | 3 | simplbi | ⊢ ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  →  𝐵  ⊆  𝐴 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  →  𝐵  ⊆  𝐴 ) ) | 
						
							| 29 | 25 | biimpd | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( 𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } )  →  𝐴  ⊆  𝐶 ) ) | 
						
							| 30 | 28 29 | anim12d | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  →  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) ) | 
						
							| 31 |  | pm4.72 | ⊢ ( ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  →  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ↔  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ∨  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) ) ) | 
						
							| 32 | 30 31 | sylib | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ↔  ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ∨  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) ) ) ) | 
						
							| 33 |  | orcom | ⊢ ( ( ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ∨  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) | 
						
							| 34 | 32 33 | bitrdi | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) ) | 
						
							| 35 | 26 34 | bitrd | ⊢ ( ¬  𝐷  ∈  𝐴  →  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) ) | 
						
							| 36 | 15 35 | pm2.61i | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐶 )  ∨  ( ( 𝐵  ∪  { 𝐷 } )  ⊆  𝐴  ∧  𝐴  ⊆  ( 𝐶  ∪  { 𝐷 } ) ) ) ) |