| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ssuzfz.1 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							ssuzfz.2 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝑍 )  | 
						
						
							| 3 | 
							
								
							 | 
							ssuzfz.3 | 
							⊢ ( 𝜑  →  𝐴  ∈  Fin )  | 
						
						
							| 4 | 
							
								2
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝑍 )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eleqtrdi | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 8 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  | 
						
						
							| 9 | 
							
								1 8
							 | 
							eqsstri | 
							⊢ 𝑍  ⊆  ℤ  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑍  ⊆  ℤ )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							sstrd | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℤ )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐴  ⊆  ℤ )  | 
						
						
							| 13 | 
							
								
							 | 
							ne0i | 
							⊢ ( 𝑘  ∈  𝐴  →  𝐴  ≠  ∅ )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐴  ≠  ∅ )  | 
						
						
							| 15 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐴  ∈  Fin )  | 
						
						
							| 16 | 
							
								
							 | 
							suprfinzcl | 
							⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  𝐴  ∈  Fin )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								12 14 15 16
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ ,   <  )  ∈  ℤ )  | 
						
						
							| 19 | 
							
								11
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  ℤ )  | 
						
						
							| 20 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑘 )  | 
						
						
							| 21 | 
							
								5 20
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑀  ≤  𝑘 )  | 
						
						
							| 22 | 
							
								
							 | 
							zssre | 
							⊢ ℤ  ⊆  ℝ  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							⊢ ( 𝜑  →  ℤ  ⊆  ℝ )  | 
						
						
							| 24 | 
							
								11 23
							 | 
							sstrd | 
							⊢ ( 𝜑  →  𝐴  ⊆  ℝ )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐴  ⊆  ℝ )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  sup ( 𝐴 ,  ℝ ,   <  )  =  sup ( 𝐴 ,  ℝ ,   <  ) )  | 
						
						
							| 28 | 
							
								25 15 26 27
							 | 
							supfirege | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ≤  sup ( 𝐴 ,  ℝ ,   <  ) )  | 
						
						
							| 29 | 
							
								7 18 19 21 28
							 | 
							elfzd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  →  𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							dfss3 | 
							⊢ ( 𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) )  ↔  ∀ 𝑘  ∈  𝐴 𝑘  ∈  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylibr | 
							⊢ ( 𝜑  →  𝐴  ⊆  ( 𝑀 ... sup ( 𝐴 ,  ℝ ,   <  ) ) )  |