Metamath Proof Explorer


Theorem sswrd

Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion sswrd ( 𝑆𝑇 → Word 𝑆 ⊆ Word 𝑇 )

Proof

Step Hyp Ref Expression
1 fss ( ( 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑆𝑆𝑇 ) → 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑇 )
2 1 expcom ( 𝑆𝑇 → ( 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑆𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑇 ) )
3 iswrdb ( 𝑤 ∈ Word 𝑆𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑆 )
4 iswrdb ( 𝑤 ∈ Word 𝑇𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑇 )
5 2 3 4 3imtr4g ( 𝑆𝑇 → ( 𝑤 ∈ Word 𝑆𝑤 ∈ Word 𝑇 ) )
6 5 ssrdv ( 𝑆𝑇 → Word 𝑆 ⊆ Word 𝑇 )