Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | sswrd | ⊢ ( 𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fss | ⊢ ( ( 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑆 ∧ 𝑆 ⊆ 𝑇 ) → 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑇 ) | |
2 | 1 | expcom | ⊢ ( 𝑆 ⊆ 𝑇 → ( 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑆 → 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑇 ) ) |
3 | iswrdb | ⊢ ( 𝑤 ∈ Word 𝑆 ↔ 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑆 ) | |
4 | iswrdb | ⊢ ( 𝑤 ∈ Word 𝑇 ↔ 𝑤 : ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ⟶ 𝑇 ) | |
5 | 2 3 4 | 3imtr4g | ⊢ ( 𝑆 ⊆ 𝑇 → ( 𝑤 ∈ Word 𝑆 → 𝑤 ∈ Word 𝑇 ) ) |
6 | 5 | ssrdv | ⊢ ( 𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇 ) |