Step |
Hyp |
Ref |
Expression |
1 |
|
df-pr |
⊢ { +∞ , -∞ } = ( { +∞ } ∪ { -∞ } ) |
2 |
1
|
ineq2i |
⊢ ( 𝐴 ∩ { +∞ , -∞ } ) = ( 𝐴 ∩ ( { +∞ } ∪ { -∞ } ) ) |
3 |
|
indi |
⊢ ( 𝐴 ∩ ( { +∞ } ∪ { -∞ } ) ) = ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) |
4 |
2 3
|
eqtri |
⊢ ( 𝐴 ∩ { +∞ , -∞ } ) = ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) |
5 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { +∞ } ) = ∅ ↔ ¬ +∞ ∈ 𝐴 ) |
6 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { -∞ } ) = ∅ ↔ ¬ -∞ ∈ 𝐴 ) |
7 |
5 6
|
anbi12i |
⊢ ( ( ( 𝐴 ∩ { +∞ } ) = ∅ ∧ ( 𝐴 ∩ { -∞ } ) = ∅ ) ↔ ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) ) |
8 |
7
|
biimpri |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) → ( ( 𝐴 ∩ { +∞ } ) = ∅ ∧ ( 𝐴 ∩ { -∞ } ) = ∅ ) ) |
9 |
|
pm4.56 |
⊢ ( ( ¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴 ) ↔ ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) |
10 |
|
un00 |
⊢ ( ( ( 𝐴 ∩ { +∞ } ) = ∅ ∧ ( 𝐴 ∩ { -∞ } ) = ∅ ) ↔ ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) = ∅ ) |
11 |
8 9 10
|
3imtr3i |
⊢ ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → ( ( 𝐴 ∩ { +∞ } ) ∪ ( 𝐴 ∩ { -∞ } ) ) = ∅ ) |
12 |
4 11
|
eqtrid |
⊢ ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → ( 𝐴 ∩ { +∞ , -∞ } ) = ∅ ) |
13 |
|
reldisj |
⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ( 𝐴 ∩ { +∞ , -∞ } ) = ∅ ↔ 𝐴 ⊆ ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) ) ) |
14 |
|
renfdisj |
⊢ ( ℝ ∩ { +∞ , -∞ } ) = ∅ |
15 |
|
disj3 |
⊢ ( ( ℝ ∩ { +∞ , -∞ } ) = ∅ ↔ ℝ = ( ℝ ∖ { +∞ , -∞ } ) ) |
16 |
14 15
|
mpbi |
⊢ ℝ = ( ℝ ∖ { +∞ , -∞ } ) |
17 |
|
difun2 |
⊢ ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) = ( ℝ ∖ { +∞ , -∞ } ) |
18 |
16 17
|
eqtr4i |
⊢ ℝ = ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) |
19 |
18
|
sseq2i |
⊢ ( 𝐴 ⊆ ℝ ↔ 𝐴 ⊆ ( ( ℝ ∪ { +∞ , -∞ } ) ∖ { +∞ , -∞ } ) ) |
20 |
13 19
|
bitr4di |
⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ( 𝐴 ∩ { +∞ , -∞ } ) = ∅ ↔ 𝐴 ⊆ ℝ ) ) |
21 |
12 20
|
syl5ib |
⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ¬ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) → 𝐴 ⊆ ℝ ) ) |
22 |
21
|
orrd |
⊢ ( 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) → ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ) |
23 |
|
df-xr |
⊢ ℝ* = ( ℝ ∪ { +∞ , -∞ } ) |
24 |
23
|
sseq2i |
⊢ ( 𝐴 ⊆ ℝ* ↔ 𝐴 ⊆ ( ℝ ∪ { +∞ , -∞ } ) ) |
25 |
|
3orrot |
⊢ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ∨ 𝐴 ⊆ ℝ ) ) |
26 |
|
df-3or |
⊢ ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ∨ 𝐴 ⊆ ℝ ) ↔ ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ) |
27 |
25 26
|
bitri |
⊢ ( ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ↔ ( ( +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ∨ 𝐴 ⊆ ℝ ) ) |
28 |
22 24 27
|
3imtr4i |
⊢ ( 𝐴 ⊆ ℝ* → ( 𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴 ) ) |