| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recld2.1 | ⊢ 𝐽  =  ( TopOpen ‘ ℂfld ) | 
						
							| 2 | 1 | zcld2 | ⊢ ℤ  ∈  ( Clsd ‘ 𝐽 ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  ⊆  ℤ  →  𝐴  ⊆  ℤ ) | 
						
							| 4 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 5 |  | difss | ⊢ ( ℤ  ∖  𝐴 )  ⊆  ℤ | 
						
							| 6 | 4 5 | elpwi2 | ⊢ ( ℤ  ∖  𝐴 )  ∈  𝒫  ℤ | 
						
							| 7 | 1 | zdis | ⊢ ( 𝐽  ↾t  ℤ )  =  𝒫  ℤ | 
						
							| 8 | 6 7 | eleqtrri | ⊢ ( ℤ  ∖  𝐴 )  ∈  ( 𝐽  ↾t  ℤ ) | 
						
							| 9 | 1 | cnfldtopon | ⊢ 𝐽  ∈  ( TopOn ‘ ℂ ) | 
						
							| 10 |  | zsscn | ⊢ ℤ  ⊆  ℂ | 
						
							| 11 |  | resttopon | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ℂ )  ∧  ℤ  ⊆  ℂ )  →  ( 𝐽  ↾t  ℤ )  ∈  ( TopOn ‘ ℤ ) ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( 𝐽  ↾t  ℤ )  ∈  ( TopOn ‘ ℤ ) | 
						
							| 13 | 12 | topontopi | ⊢ ( 𝐽  ↾t  ℤ )  ∈  Top | 
						
							| 14 | 12 | toponunii | ⊢ ℤ  =  ∪  ( 𝐽  ↾t  ℤ ) | 
						
							| 15 | 14 | iscld | ⊢ ( ( 𝐽  ↾t  ℤ )  ∈  Top  →  ( 𝐴  ∈  ( Clsd ‘ ( 𝐽  ↾t  ℤ ) )  ↔  ( 𝐴  ⊆  ℤ  ∧  ( ℤ  ∖  𝐴 )  ∈  ( 𝐽  ↾t  ℤ ) ) ) ) | 
						
							| 16 | 13 15 | ax-mp | ⊢ ( 𝐴  ∈  ( Clsd ‘ ( 𝐽  ↾t  ℤ ) )  ↔  ( 𝐴  ⊆  ℤ  ∧  ( ℤ  ∖  𝐴 )  ∈  ( 𝐽  ↾t  ℤ ) ) ) | 
						
							| 17 | 3 8 16 | sylanblrc | ⊢ ( 𝐴  ⊆  ℤ  →  𝐴  ∈  ( Clsd ‘ ( 𝐽  ↾t  ℤ ) ) ) | 
						
							| 18 |  | restcldr | ⊢ ( ( ℤ  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐴  ∈  ( Clsd ‘ ( 𝐽  ↾t  ℤ ) ) )  →  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 19 | 2 17 18 | sylancr | ⊢ ( 𝐴  ⊆  ℤ  →  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) |