| Step | Hyp | Ref | Expression | 
						
							| 1 |  | staffval.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | staffval.i | ⊢  ∗   =  ( *𝑟 ‘ 𝑅 ) | 
						
							| 3 |  | staffval.f | ⊢  ∙   =  ( *rf ‘ 𝑅 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑓  =  𝑅  →  ( Base ‘ 𝑓 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑓  =  𝑅  →  ( Base ‘ 𝑓 )  =  𝐵 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑓  =  𝑅  →  ( *𝑟 ‘ 𝑓 )  =  ( *𝑟 ‘ 𝑅 ) ) | 
						
							| 7 | 6 2 | eqtr4di | ⊢ ( 𝑓  =  𝑅  →  ( *𝑟 ‘ 𝑓 )  =   ∗  ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑓  =  𝑅  →  ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 )  =  (  ∗  ‘ 𝑥 ) ) | 
						
							| 9 | 5 8 | mpteq12dv | ⊢ ( 𝑓  =  𝑅  →  ( 𝑥  ∈  ( Base ‘ 𝑓 )  ↦  ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) ) | 
						
							| 10 |  | df-staf | ⊢ *rf  =  ( 𝑓  ∈  V  ↦  ( 𝑥  ∈  ( Base ‘ 𝑓 )  ↦  ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) | 
						
							| 12 |  | fvrn0 | ⊢ (  ∗  ‘ 𝑥 )  ∈  ( ran   ∗   ∪  { ∅ } ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑥  ∈  𝐵  →  (  ∗  ‘ 𝑥 )  ∈  ( ran   ∗   ∪  { ∅ } ) ) | 
						
							| 14 | 11 13 | fmpti | ⊢ ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) : 𝐵 ⟶ ( ran   ∗   ∪  { ∅ } ) | 
						
							| 15 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 16 | 2 | fvexi | ⊢  ∗   ∈  V | 
						
							| 17 | 16 | rnex | ⊢ ran   ∗   ∈  V | 
						
							| 18 |  | p0ex | ⊢ { ∅ }  ∈  V | 
						
							| 19 | 17 18 | unex | ⊢ ( ran   ∗   ∪  { ∅ } )  ∈  V | 
						
							| 20 |  | fex2 | ⊢ ( ( ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) : 𝐵 ⟶ ( ran   ∗   ∪  { ∅ } )  ∧  𝐵  ∈  V  ∧  ( ran   ∗   ∪  { ∅ } )  ∈  V )  →  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) )  ∈  V ) | 
						
							| 21 | 14 15 19 20 | mp3an | ⊢ ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) )  ∈  V | 
						
							| 22 | 9 10 21 | fvmpt | ⊢ ( 𝑅  ∈  V  →  ( *rf ‘ 𝑅 )  =  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) ) | 
						
							| 23 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( *rf ‘ 𝑅 )  =  ∅ ) | 
						
							| 24 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  (  ∗  ‘ 𝑥 ) )  =  ∅ | 
						
							| 25 | 23 24 | eqtr4di | ⊢ ( ¬  𝑅  ∈  V  →  ( *rf ‘ 𝑅 )  =  ( 𝑥  ∈  ∅  ↦  (  ∗  ‘ 𝑥 ) ) ) | 
						
							| 26 |  | fvprc | ⊢ ( ¬  𝑅  ∈  V  →  ( Base ‘ 𝑅 )  =  ∅ ) | 
						
							| 27 | 1 26 | eqtrid | ⊢ ( ¬  𝑅  ∈  V  →  𝐵  =  ∅ ) | 
						
							| 28 | 27 | mpteq1d | ⊢ ( ¬  𝑅  ∈  V  →  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) )  =  ( 𝑥  ∈  ∅  ↦  (  ∗  ‘ 𝑥 ) ) ) | 
						
							| 29 | 25 28 | eqtr4d | ⊢ ( ¬  𝑅  ∈  V  →  ( *rf ‘ 𝑅 )  =  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) ) | 
						
							| 30 | 22 29 | pm2.61i | ⊢ ( *rf ‘ 𝑅 )  =  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) | 
						
							| 31 | 3 30 | eqtri | ⊢  ∙   =  ( 𝑥  ∈  𝐵  ↦  (  ∗  ‘ 𝑥 ) ) |