Step |
Hyp |
Ref |
Expression |
1 |
|
staffval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
staffval.i |
⊢ ∗ = ( *𝑟 ‘ 𝑅 ) |
3 |
|
staffval.f |
⊢ ∙ = ( *rf ‘ 𝑅 ) |
4 |
|
fveq2 |
⊢ ( 𝑓 = 𝑅 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝑅 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑓 = 𝑅 → ( Base ‘ 𝑓 ) = 𝐵 ) |
6 |
|
fveq2 |
⊢ ( 𝑓 = 𝑅 → ( *𝑟 ‘ 𝑓 ) = ( *𝑟 ‘ 𝑅 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑓 = 𝑅 → ( *𝑟 ‘ 𝑓 ) = ∗ ) |
8 |
7
|
fveq1d |
⊢ ( 𝑓 = 𝑅 → ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) = ( ∗ ‘ 𝑥 ) ) |
9 |
5 8
|
mpteq12dv |
⊢ ( 𝑓 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ) |
10 |
|
df-staf |
⊢ *rf = ( 𝑓 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑓 ) ↦ ( ( *𝑟 ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) |
12 |
|
fvrn0 |
⊢ ( ∗ ‘ 𝑥 ) ∈ ( ran ∗ ∪ { ∅ } ) |
13 |
12
|
a1i |
⊢ ( 𝑥 ∈ 𝐵 → ( ∗ ‘ 𝑥 ) ∈ ( ran ∗ ∪ { ∅ } ) ) |
14 |
11 13
|
fmpti |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) : 𝐵 ⟶ ( ran ∗ ∪ { ∅ } ) |
15 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
2
|
fvexi |
⊢ ∗ ∈ V |
17 |
16
|
rnex |
⊢ ran ∗ ∈ V |
18 |
|
p0ex |
⊢ { ∅ } ∈ V |
19 |
17 18
|
unex |
⊢ ( ran ∗ ∪ { ∅ } ) ∈ V |
20 |
|
fex2 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) : 𝐵 ⟶ ( ran ∗ ∪ { ∅ } ) ∧ 𝐵 ∈ V ∧ ( ran ∗ ∪ { ∅ } ) ∈ V ) → ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ∈ V ) |
21 |
14 15 19 20
|
mp3an |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ∈ V |
22 |
9 10 21
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ) |
23 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ∅ ) |
24 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( ∗ ‘ 𝑥 ) ) = ∅ |
25 |
23 24
|
eqtr4di |
⊢ ( ¬ 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ ∅ ↦ ( ∗ ‘ 𝑥 ) ) ) |
26 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) |
27 |
1 26
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
28 |
27
|
mpteq1d |
⊢ ( ¬ 𝑅 ∈ V → ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) = ( 𝑥 ∈ ∅ ↦ ( ∗ ‘ 𝑥 ) ) ) |
29 |
25 28
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) ) |
30 |
22 29
|
pm2.61i |
⊢ ( *rf ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) |
31 |
3 30
|
eqtri |
⊢ ∙ = ( 𝑥 ∈ 𝐵 ↦ ( ∗ ‘ 𝑥 ) ) |