Metamath Proof Explorer


Theorem starvndxnbasendx

Description: The slot for the involution function is not the slot for the base set in an extensible structure. Formerly part of proof for ressstarv . (Contributed by AV, 18-Oct-2024)

Ref Expression
Assertion starvndxnbasendx ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 1lt4 1 < 4
3 1 2 gtneii 4 ≠ 1
4 starvndx ( *𝑟 ‘ ndx ) = 4
5 basendx ( Base ‘ ndx ) = 1
6 4 5 neeq12i ( ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx ) ↔ 4 ≠ 1 )
7 3 6 mpbir ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx )