Step |
Hyp |
Ref |
Expression |
1 |
|
pm3.35 |
⊢ ( ( 7 < 𝑛 ∧ ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) → 𝑛 ∈ GoldbachOdd ) |
2 |
|
gbogbow |
⊢ ( 𝑛 ∈ GoldbachOdd → 𝑛 ∈ GoldbachOddW ) |
3 |
2
|
a1d |
⊢ ( 𝑛 ∈ GoldbachOdd → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) |
4 |
1 3
|
syl |
⊢ ( ( 7 < 𝑛 ∧ ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) ) → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) |
5 |
4
|
ex |
⊢ ( 7 < 𝑛 → ( ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) |
6 |
5
|
a1d |
⊢ ( 7 < 𝑛 → ( 𝑛 ∈ Odd → ( ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) ) |
7 |
|
oddz |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℤ ) |
8 |
7
|
zred |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℝ ) |
9 |
|
7re |
⊢ 7 ∈ ℝ |
10 |
9
|
a1i |
⊢ ( 𝑛 ∈ Odd → 7 ∈ ℝ ) |
11 |
8 10
|
lenltd |
⊢ ( 𝑛 ∈ Odd → ( 𝑛 ≤ 7 ↔ ¬ 7 < 𝑛 ) ) |
12 |
8 10
|
leloed |
⊢ ( 𝑛 ∈ Odd → ( 𝑛 ≤ 7 ↔ ( 𝑛 < 7 ∨ 𝑛 = 7 ) ) ) |
13 |
7
|
adantr |
⊢ ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → 𝑛 ∈ ℤ ) |
14 |
|
6nn |
⊢ 6 ∈ ℕ |
15 |
14
|
nnzi |
⊢ 6 ∈ ℤ |
16 |
13 15
|
jctir |
⊢ ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → ( 𝑛 ∈ ℤ ∧ 6 ∈ ℤ ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑛 < 7 ∧ ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) ) → ( 𝑛 ∈ ℤ ∧ 6 ∈ ℤ ) ) |
18 |
|
df-7 |
⊢ 7 = ( 6 + 1 ) |
19 |
18
|
breq2i |
⊢ ( 𝑛 < 7 ↔ 𝑛 < ( 6 + 1 ) ) |
20 |
19
|
biimpi |
⊢ ( 𝑛 < 7 → 𝑛 < ( 6 + 1 ) ) |
21 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
22 |
|
5nn |
⊢ 5 ∈ ℕ |
23 |
22
|
nnzi |
⊢ 5 ∈ ℤ |
24 |
|
zltp1le |
⊢ ( ( 5 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 5 < 𝑛 ↔ ( 5 + 1 ) ≤ 𝑛 ) ) |
25 |
23 7 24
|
sylancr |
⊢ ( 𝑛 ∈ Odd → ( 5 < 𝑛 ↔ ( 5 + 1 ) ≤ 𝑛 ) ) |
26 |
25
|
biimpa |
⊢ ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → ( 5 + 1 ) ≤ 𝑛 ) |
27 |
21 26
|
eqbrtrid |
⊢ ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → 6 ≤ 𝑛 ) |
28 |
20 27
|
anim12ci |
⊢ ( ( 𝑛 < 7 ∧ ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) ) → ( 6 ≤ 𝑛 ∧ 𝑛 < ( 6 + 1 ) ) ) |
29 |
|
zgeltp1eq |
⊢ ( ( 𝑛 ∈ ℤ ∧ 6 ∈ ℤ ) → ( ( 6 ≤ 𝑛 ∧ 𝑛 < ( 6 + 1 ) ) → 𝑛 = 6 ) ) |
30 |
17 28 29
|
sylc |
⊢ ( ( 𝑛 < 7 ∧ ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) ) → 𝑛 = 6 ) |
31 |
30
|
orcd |
⊢ ( ( 𝑛 < 7 ∧ ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) ) → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) |
32 |
31
|
ex |
⊢ ( 𝑛 < 7 → ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) ) |
33 |
|
olc |
⊢ ( 𝑛 = 7 → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) |
34 |
33
|
a1d |
⊢ ( 𝑛 = 7 → ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) ) |
35 |
32 34
|
jaoi |
⊢ ( ( 𝑛 < 7 ∨ 𝑛 = 7 ) → ( ( 𝑛 ∈ Odd ∧ 5 < 𝑛 ) → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) ) |
36 |
35
|
expd |
⊢ ( ( 𝑛 < 7 ∨ 𝑛 = 7 ) → ( 𝑛 ∈ Odd → ( 5 < 𝑛 → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) ) ) |
37 |
36
|
com12 |
⊢ ( 𝑛 ∈ Odd → ( ( 𝑛 < 7 ∨ 𝑛 = 7 ) → ( 5 < 𝑛 → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) ) ) |
38 |
12 37
|
sylbid |
⊢ ( 𝑛 ∈ Odd → ( 𝑛 ≤ 7 → ( 5 < 𝑛 → ( 𝑛 = 6 ∨ 𝑛 = 7 ) ) ) ) |
39 |
|
eleq1 |
⊢ ( 𝑛 = 6 → ( 𝑛 ∈ Odd ↔ 6 ∈ Odd ) ) |
40 |
|
6even |
⊢ 6 ∈ Even |
41 |
|
evennodd |
⊢ ( 6 ∈ Even → ¬ 6 ∈ Odd ) |
42 |
41
|
pm2.21d |
⊢ ( 6 ∈ Even → ( 6 ∈ Odd → 𝑛 ∈ GoldbachOddW ) ) |
43 |
40 42
|
mp1i |
⊢ ( 𝑛 = 6 → ( 6 ∈ Odd → 𝑛 ∈ GoldbachOddW ) ) |
44 |
39 43
|
sylbid |
⊢ ( 𝑛 = 6 → ( 𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ) ) |
45 |
|
7gbow |
⊢ 7 ∈ GoldbachOddW |
46 |
|
eleq1 |
⊢ ( 𝑛 = 7 → ( 𝑛 ∈ GoldbachOddW ↔ 7 ∈ GoldbachOddW ) ) |
47 |
45 46
|
mpbiri |
⊢ ( 𝑛 = 7 → 𝑛 ∈ GoldbachOddW ) |
48 |
47
|
a1d |
⊢ ( 𝑛 = 7 → ( 𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ) ) |
49 |
44 48
|
jaoi |
⊢ ( ( 𝑛 = 6 ∨ 𝑛 = 7 ) → ( 𝑛 ∈ Odd → 𝑛 ∈ GoldbachOddW ) ) |
50 |
49
|
com12 |
⊢ ( 𝑛 ∈ Odd → ( ( 𝑛 = 6 ∨ 𝑛 = 7 ) → 𝑛 ∈ GoldbachOddW ) ) |
51 |
38 50
|
syl6d |
⊢ ( 𝑛 ∈ Odd → ( 𝑛 ≤ 7 → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) |
52 |
11 51
|
sylbird |
⊢ ( 𝑛 ∈ Odd → ( ¬ 7 < 𝑛 → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) |
53 |
52
|
com12 |
⊢ ( ¬ 7 < 𝑛 → ( 𝑛 ∈ Odd → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) |
54 |
53
|
a1dd |
⊢ ( ¬ 7 < 𝑛 → ( 𝑛 ∈ Odd → ( ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) ) |
55 |
6 54
|
pm2.61i |
⊢ ( 𝑛 ∈ Odd → ( ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) ) |
56 |
55
|
ralimia |
⊢ ( ∀ 𝑛 ∈ Odd ( 7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) |