| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirling.1 | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ0  ↦  ( ( √ ‘ ( ( 2  ·  π )  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( log ‘ ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( log ‘ ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 4 | 2 3 | stirlinglem14 | ⊢ ∃ 𝑐  ∈  ℝ+ ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑛 𝑐  ∈  ℝ+ | 
						
							| 6 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑛  ⇝ | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑛 𝑐 | 
						
							| 9 | 6 7 8 | nfbr | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 | 
						
							| 10 | 5 9 | nfan | ⊢ Ⅎ 𝑛 ( 𝑐  ∈  ℝ+  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ ( 2  ·  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ ( 2  ·  𝑛 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 2 ↑ ( 4  ·  𝑛 ) )  ·  ( ( ! ‘ 𝑛 ) ↑ 4 ) )  /  ( ( ! ‘ ( 2  ·  𝑛 ) ) ↑ 2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 2 ↑ ( 4  ·  𝑛 ) )  ·  ( ( ! ‘ 𝑛 ) ↑ 4 ) )  /  ( ( ! ‘ ( 2  ·  𝑛 ) ) ↑ 2 ) )  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ 𝑛 ) ↑ 4 )  /  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ ( 2  ·  𝑛 ) ) ) ‘ 𝑛 ) ↑ 2 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ 𝑛 ) ↑ 4 )  /  ( ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ‘ ( 2  ·  𝑛 ) ) ) ‘ 𝑛 ) ↑ 2 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝑛 ↑ 2 )  /  ( 𝑛  ·  ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 )  →  𝑐  ∈  ℝ+ ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 ) | 
						
							| 18 | 10 1 2 11 12 13 14 15 16 17 | stirlinglem15 | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( 𝑆 ‘ 𝑛 ) ) )  ⇝  1 ) | 
						
							| 19 | 18 | rexlimiva | ⊢ ( ∃ 𝑐  ∈  ℝ+ ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) )  ⇝  𝑐  →  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( 𝑆 ‘ 𝑛 ) ) )  ⇝  1 ) | 
						
							| 20 | 4 19 | ax-mp | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( 𝑆 ‘ 𝑛 ) ) )  ⇝  1 |