Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem10.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
2 |
|
stirlinglem10.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
3 |
|
stirlinglem10.4 |
⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) |
4 |
|
stirlinglem10.5 |
⊢ 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
|
1zzd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) |
7 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) |
8 |
1 2 7 3
|
stirlinglem9 |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ) |
9 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
10 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
11 |
9 10
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℂ ) |
12 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
13 |
11 12
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
14 |
13
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
15 |
|
0red |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
16 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
17 |
|
2re |
⊢ 2 ∈ ℝ |
18 |
17
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
19 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
20 |
18 19
|
remulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ ) |
21 |
20 16
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
22 |
|
0lt1 |
⊢ 0 < 1 |
23 |
22
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
24 |
|
2rp |
⊢ 2 ∈ ℝ+ |
25 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
26 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
27 |
25 26
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ+ ) |
28 |
16 27
|
ltaddrp2d |
⊢ ( 𝑁 ∈ ℕ → 1 < ( ( 2 · 𝑁 ) + 1 ) ) |
29 |
15 16 21 23 28
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 𝑁 ) + 1 ) ) |
30 |
29
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
31 |
|
2z |
⊢ 2 ∈ ℤ |
32 |
31
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℤ ) |
33 |
13 30 32
|
expne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) |
34 |
14 33
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
35 |
16
|
renegcld |
⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℝ ) |
36 |
21
|
resqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
37 |
36 33
|
rereccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
38 |
|
1re |
⊢ 1 ∈ ℝ |
39 |
|
lt0neg2 |
⊢ ( 1 ∈ ℝ → ( 0 < 1 ↔ - 1 < 0 ) ) |
40 |
38 39
|
ax-mp |
⊢ ( 0 < 1 ↔ - 1 < 0 ) |
41 |
23 40
|
sylib |
⊢ ( 𝑁 ∈ ℕ → - 1 < 0 ) |
42 |
21 30
|
sqgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
43 |
36 42
|
recgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
44 |
35 15 37 41 43
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → - 1 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
45 |
|
2nn |
⊢ 2 ∈ ℕ |
46 |
45
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
47 |
|
expgt1 |
⊢ ( ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ∧ 2 ∈ ℕ ∧ 1 < ( ( 2 · 𝑁 ) + 1 ) ) → 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
48 |
21 46 28 47
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
49 |
36 42
|
elrpd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
50 |
49
|
recgt1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↔ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) ) |
51 |
48 50
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) |
52 |
37 16
|
absltd |
⊢ ( 𝑁 ∈ ℕ → ( ( abs ‘ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) < 1 ↔ ( - 1 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∧ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) ) ) |
53 |
44 51 52
|
mpbir2and |
⊢ ( 𝑁 ∈ ℕ → ( abs ‘ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) < 1 ) |
54 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
55 |
54
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
56 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) ) |
57 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑘 = 𝑗 ) → 𝑘 = 𝑗 ) |
58 |
57
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑘 = 𝑗 ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ) |
59 |
|
elnnuz |
⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
60 |
59
|
biimpri |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → 𝑗 ∈ ℕ ) |
61 |
60
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑗 ∈ ℕ ) |
62 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
63 |
61
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑗 ∈ ℕ0 ) |
64 |
62 63
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ∈ ℂ ) |
65 |
56 58 61 64
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝐿 ‘ 𝑗 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ) |
66 |
34 53 55 65
|
geolim2 |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐿 ) ⇝ ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) ) |
67 |
34
|
exp1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) = ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
68 |
14 33
|
dividd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = 1 ) |
69 |
68
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 1 = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
71 |
49
|
rpcnne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) ) |
72 |
|
divsubdir |
⊢ ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
73 |
14 12 71 72
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
74 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
75 |
|
binom2 |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
76 |
11 74 75
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
77 |
76
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) = ( ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − 1 ) ) |
78 |
9 10
|
sqmuld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ) |
79 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
80 |
79
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 2 ) = 4 ) |
81 |
80
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) = ( 4 · ( 𝑁 ↑ 2 ) ) ) |
82 |
78 81
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) ↑ 2 ) = ( 4 · ( 𝑁 ↑ 2 ) ) ) |
83 |
11
|
mulid1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) · 1 ) = ( 2 · 𝑁 ) ) |
84 |
83
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) = ( 2 · ( 2 · 𝑁 ) ) ) |
85 |
9 9 10
|
mulassd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 2 ) · 𝑁 ) = ( 2 · ( 2 · 𝑁 ) ) ) |
86 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
87 |
86
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 2 ) = 4 ) |
88 |
87
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 2 ) · 𝑁 ) = ( 4 · 𝑁 ) ) |
89 |
84 85 88
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) = ( 4 · 𝑁 ) ) |
90 |
82 89
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) = ( ( 4 · ( 𝑁 ↑ 2 ) ) + ( 4 · 𝑁 ) ) ) |
91 |
|
4cn |
⊢ 4 ∈ ℂ |
92 |
91
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℂ ) |
93 |
10
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
94 |
92 93 10
|
adddid |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) = ( ( 4 · ( 𝑁 ↑ 2 ) ) + ( 4 · 𝑁 ) ) ) |
95 |
10
|
sqvald |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
96 |
10
|
mulid1d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · 1 ) = 𝑁 ) |
97 |
96
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( 𝑁 · 1 ) ) |
98 |
95 97
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( ( 𝑁 · 𝑁 ) + ( 𝑁 · 1 ) ) ) |
99 |
10 10 12
|
adddid |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) = ( ( 𝑁 · 𝑁 ) + ( 𝑁 · 1 ) ) ) |
100 |
98 99
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( 𝑁 · ( 𝑁 + 1 ) ) ) |
101 |
100
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
102 |
90 94 101
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
103 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
104 |
103
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 1 ↑ 2 ) = 1 ) |
105 |
102 104
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) ) |
106 |
105
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − 1 ) = ( ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) − 1 ) ) |
107 |
10 12
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
108 |
10 107
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) ∈ ℂ ) |
109 |
92 108
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
110 |
109 12
|
pncand |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) − 1 ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
111 |
77 106 110
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
112 |
111
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
113 |
70 73 112
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
114 |
67 113
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
115 |
|
4pos |
⊢ 0 < 4 |
116 |
115
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 4 ) |
117 |
116
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → 4 ≠ 0 ) |
118 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
119 |
19 16
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
120 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
121 |
19
|
ltp1d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 1 ) ) |
122 |
15 19 119 120 121
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
123 |
122
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
124 |
10 107 118 123
|
mulne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) ≠ 0 ) |
125 |
92 108 117 124
|
mulne0d |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ≠ 0 ) |
126 |
12 14 109 14 33 33 125
|
divdivdivd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
127 |
12 14
|
mulcomd |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) ) |
128 |
127
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
129 |
12
|
mulid1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 · 1 ) = 1 ) |
130 |
129
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 1 = ( 1 · 1 ) ) |
131 |
130
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
132 |
12 92 12 108 117 124
|
divmuldivd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
133 |
131 132
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
134 |
68 133
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) · ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( 1 · ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
135 |
14 14 12 109 33 125
|
divmuldivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) · ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
136 |
92 117
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℂ ) |
137 |
108 124
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
138 |
136 137
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ∈ ℂ ) |
139 |
138
|
mulid2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
140 |
134 135 139
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
141 |
126 128 140
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
142 |
114 141
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
143 |
66 142
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐿 ) ⇝ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
144 |
59
|
biimpi |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
145 |
144
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
146 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) |
147 |
146
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
148 |
147
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
149 |
146
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
150 |
148 149
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
151 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) |
152 |
151
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
153 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℂ ) |
154 |
152
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℂ ) |
155 |
153 154
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
156 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℂ ) |
157 |
155 156
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
158 |
|
0red |
⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
159 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
160 |
17
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
161 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
162 |
160 161
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
163 |
162 159
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
164 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
165 |
24
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
166 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
167 |
165 166
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
168 |
159 167
|
ltaddrp2d |
⊢ ( 𝑛 ∈ ℕ → 1 < ( ( 2 · 𝑛 ) + 1 ) ) |
169 |
158 159 163 164 168
|
lttrd |
⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
170 |
151 169
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
171 |
170
|
gt0ne0d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
172 |
171
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
173 |
157 172
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
174 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℂ ) |
175 |
153 174
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
176 |
175 156
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
177 |
30
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
178 |
176 177
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
179 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
180 |
179
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℕ0 ) |
181 |
152
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ0 ) |
182 |
180 181
|
nn0mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
183 |
178 182
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
184 |
173 183
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
185 |
3 150 152 184
|
fvmptd3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
186 |
185
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
187 |
169
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
188 |
163 187
|
rereccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
189 |
151 188
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
190 |
189
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
191 |
21 30
|
rereccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
192 |
191
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
193 |
192 182
|
reexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℝ ) |
194 |
193
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℝ ) |
195 |
190 194
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℝ ) |
196 |
186 195
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ∈ ℝ ) |
197 |
|
readdcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝑛 + 𝑖 ) ∈ ℝ ) |
198 |
197
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑛 + 𝑖 ) ∈ ℝ ) |
199 |
145 196 198
|
seqcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) ∈ ℝ ) |
200 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
201 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
202 |
201 181
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℂ ) |
203 |
4 200 152 202
|
fvmptd3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
204 |
37
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
205 |
204 181
|
reexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℝ ) |
206 |
203 205
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ℝ ) |
207 |
206
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ℝ ) |
208 |
145 207 198
|
seqcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐿 ) ‘ 𝑗 ) ∈ ℝ ) |
209 |
31
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 2 ∈ ℤ ) |
210 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℤ ) |
211 |
209 210
|
zmulcld |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 2 · 𝑛 ) ∈ ℤ ) |
212 |
|
1exp |
⊢ ( ( 2 · 𝑛 ) ∈ ℤ → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
213 |
211 212
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
214 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
215 |
210 214
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ 𝑛 ) = 1 ) |
216 |
213 215
|
eqtr4d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ ( 2 · 𝑛 ) ) = ( 1 ↑ 𝑛 ) ) |
217 |
216
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 ↑ ( 2 · 𝑛 ) ) = ( 1 ↑ 𝑛 ) ) |
218 |
176 181 180
|
expmuld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) |
219 |
217 218
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 ↑ 𝑛 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) ) |
220 |
156 176 177 182
|
expdivd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
221 |
176
|
sqcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
222 |
31
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℤ ) |
223 |
176 177 222
|
expne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) |
224 |
156 221 223 181
|
expdivd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) = ( ( 1 ↑ 𝑛 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) ) |
225 |
219 220 224
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
226 |
225
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) |
227 |
|
1rp |
⊢ 1 ∈ ℝ+ |
228 |
227
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ+ ) |
229 |
17
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℝ ) |
230 |
152
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℝ ) |
231 |
229 230
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℝ ) |
232 |
180
|
nn0ge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 2 ) |
233 |
181
|
nn0ge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑛 ) |
234 |
229 230 232 233
|
mulge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ ( 2 · 𝑛 ) ) |
235 |
231 234
|
ge0p1rpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ+ ) |
236 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ ) |
237 |
228
|
rpge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 1 ) |
238 |
159 163 168
|
ltled |
⊢ ( 𝑛 ∈ ℕ → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
239 |
151 238
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
240 |
239
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
241 |
228 235 236 237 240
|
lediv2ad |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ ( 1 / 1 ) ) |
242 |
156
|
div1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / 1 ) = 1 ) |
243 |
241 242
|
breqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ 1 ) |
244 |
152 188
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
245 |
19
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℝ ) |
246 |
229 245
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
247 |
15 19 120
|
ltled |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
248 |
247
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑁 ) |
249 |
229 245 232 248
|
mulge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ ( 2 · 𝑁 ) ) |
250 |
246 249
|
ge0p1rpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ+ ) |
251 |
250 222
|
rpexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
252 |
251
|
rpreccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ+ ) |
253 |
210
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℤ ) |
254 |
252 253
|
rpexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℝ+ ) |
255 |
244 236 254
|
lemul1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ 1 ↔ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) ) |
256 |
243 255
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) |
257 |
202
|
mulid2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
258 |
256 257
|
breqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
259 |
226 258
|
eqbrtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ≤ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
260 |
259 185 203
|
3brtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ≤ ( 𝐿 ‘ 𝑛 ) ) |
261 |
260
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ≤ ( 𝐿 ‘ 𝑛 ) ) |
262 |
145 196 207 261
|
serle |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐿 ) ‘ 𝑗 ) ) |
263 |
5 6 8 143 199 208 262
|
climle |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |