| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem10.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 2 |
|
stirlinglem10.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 3 |
|
stirlinglem10.4 |
⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) |
| 4 |
|
stirlinglem10.5 |
⊢ 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
|
1zzd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) |
| 7 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) |
| 8 |
1 2 7 3
|
stirlinglem9 |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ) |
| 9 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 10 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 11 |
9 10
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℂ ) |
| 12 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 13 |
11 12
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 14 |
13
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
| 15 |
|
0red |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
| 16 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
| 17 |
|
2re |
⊢ 2 ∈ ℝ |
| 18 |
17
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 19 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 20 |
18 19
|
remulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ ) |
| 21 |
20 16
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ) |
| 22 |
|
0lt1 |
⊢ 0 < 1 |
| 23 |
22
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 24 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 25 |
24
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
| 26 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 27 |
25 26
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 28 |
16 27
|
ltaddrp2d |
⊢ ( 𝑁 ∈ ℕ → 1 < ( ( 2 · 𝑁 ) + 1 ) ) |
| 29 |
15 16 21 23 28
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 𝑁 ) + 1 ) ) |
| 30 |
29
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 31 |
|
2z |
⊢ 2 ∈ ℤ |
| 32 |
31
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℤ ) |
| 33 |
13 30 32
|
expne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) |
| 34 |
14 33
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 35 |
16
|
renegcld |
⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℝ ) |
| 36 |
21
|
resqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
| 37 |
36 33
|
rereccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
| 38 |
|
1re |
⊢ 1 ∈ ℝ |
| 39 |
|
lt0neg2 |
⊢ ( 1 ∈ ℝ → ( 0 < 1 ↔ - 1 < 0 ) ) |
| 40 |
38 39
|
ax-mp |
⊢ ( 0 < 1 ↔ - 1 < 0 ) |
| 41 |
23 40
|
sylib |
⊢ ( 𝑁 ∈ ℕ → - 1 < 0 ) |
| 42 |
21 30
|
sqgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
| 43 |
36 42
|
recgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 44 |
35 15 37 41 43
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → - 1 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 45 |
|
2nn |
⊢ 2 ∈ ℕ |
| 46 |
45
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
| 47 |
|
expgt1 |
⊢ ( ( ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ ∧ 2 ∈ ℕ ∧ 1 < ( ( 2 · 𝑁 ) + 1 ) ) → 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
| 48 |
21 46 28 47
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) |
| 49 |
36 42
|
elrpd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 50 |
49
|
recgt1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 < ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↔ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) ) |
| 51 |
48 50
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) |
| 52 |
37 16
|
absltd |
⊢ ( 𝑁 ∈ ℕ → ( ( abs ‘ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) < 1 ↔ ( - 1 < ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∧ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) < 1 ) ) ) |
| 53 |
44 51 52
|
mpbir2and |
⊢ ( 𝑁 ∈ ℕ → ( abs ‘ ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) < 1 ) |
| 54 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 55 |
54
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
| 56 |
4
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝐿 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) ) ) |
| 57 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑘 = 𝑗 ) → 𝑘 = 𝑗 ) |
| 58 |
57
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) ∧ 𝑘 = 𝑗 ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ) |
| 59 |
|
elnnuz |
⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 60 |
59
|
biimpri |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 1 ) → 𝑗 ∈ ℕ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑗 ∈ ℕ ) |
| 62 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 63 |
61
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 64 |
62 63
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ∈ ℂ ) |
| 65 |
56 58 61 64
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝐿 ‘ 𝑗 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑗 ) ) |
| 66 |
34 53 55 65
|
geolim2 |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐿 ) ⇝ ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) ) |
| 67 |
34
|
exp1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) = ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 68 |
14 33
|
dividd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = 1 ) |
| 69 |
68
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 1 = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 71 |
49
|
rpcnne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) ) |
| 72 |
|
divsubdir |
⊢ ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ∧ ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 73 |
14 12 71 72
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 74 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 75 |
|
binom2 |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
| 76 |
11 74 75
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) = ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) ) |
| 77 |
76
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) = ( ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − 1 ) ) |
| 78 |
9 10
|
sqmuld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) ) |
| 79 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 80 |
79
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 2 ) = 4 ) |
| 81 |
80
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ 2 ) · ( 𝑁 ↑ 2 ) ) = ( 4 · ( 𝑁 ↑ 2 ) ) ) |
| 82 |
78 81
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) ↑ 2 ) = ( 4 · ( 𝑁 ↑ 2 ) ) ) |
| 83 |
11
|
mulridd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) · 1 ) = ( 2 · 𝑁 ) ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) = ( 2 · ( 2 · 𝑁 ) ) ) |
| 85 |
9 9 10
|
mulassd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 2 ) · 𝑁 ) = ( 2 · ( 2 · 𝑁 ) ) ) |
| 86 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 87 |
86
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 2 ) = 4 ) |
| 88 |
87
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 2 ) · 𝑁 ) = ( 4 · 𝑁 ) ) |
| 89 |
84 85 88
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) = ( 4 · 𝑁 ) ) |
| 90 |
82 89
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) = ( ( 4 · ( 𝑁 ↑ 2 ) ) + ( 4 · 𝑁 ) ) ) |
| 91 |
|
4cn |
⊢ 4 ∈ ℂ |
| 92 |
91
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℂ ) |
| 93 |
10
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℂ ) |
| 94 |
92 93 10
|
adddid |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) = ( ( 4 · ( 𝑁 ↑ 2 ) ) + ( 4 · 𝑁 ) ) ) |
| 95 |
10
|
sqvald |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
| 96 |
10
|
mulridd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · 1 ) = 𝑁 ) |
| 97 |
96
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( 𝑁 · 1 ) ) |
| 98 |
95 97
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( ( 𝑁 · 𝑁 ) + ( 𝑁 · 1 ) ) ) |
| 99 |
10 10 12
|
adddid |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) = ( ( 𝑁 · 𝑁 ) + ( 𝑁 · 1 ) ) ) |
| 100 |
98 99
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( 𝑁 · ( 𝑁 + 1 ) ) ) |
| 101 |
100
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 102 |
90 94 101
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 103 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 104 |
103
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 1 ↑ 2 ) = 1 ) |
| 105 |
102 104
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) ) |
| 106 |
105
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) ↑ 2 ) + ( 2 · ( ( 2 · 𝑁 ) · 1 ) ) ) + ( 1 ↑ 2 ) ) − 1 ) = ( ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) − 1 ) ) |
| 107 |
10 12
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 108 |
10 107
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 109 |
92 108
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 110 |
109 12
|
pncand |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) + 1 ) − 1 ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 111 |
77 106 110
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) = ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) |
| 112 |
111
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) − 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 113 |
70 73 112
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) |
| 114 |
67 113
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) |
| 115 |
|
4pos |
⊢ 0 < 4 |
| 116 |
115
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 4 ) |
| 117 |
116
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → 4 ≠ 0 ) |
| 118 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 119 |
19 16
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 120 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 121 |
19
|
ltp1d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 1 ) ) |
| 122 |
15 19 119 120 121
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
| 123 |
122
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
| 124 |
10 107 118 123
|
mulne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · ( 𝑁 + 1 ) ) ≠ 0 ) |
| 125 |
92 108 117 124
|
mulne0d |
⊢ ( 𝑁 ∈ ℕ → ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ≠ 0 ) |
| 126 |
12 14 109 14 33 33 125
|
divdivdivd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 127 |
12 14
|
mulcomd |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) ) |
| 128 |
127
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 · ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 129 |
12
|
mulridd |
⊢ ( 𝑁 ∈ ℕ → ( 1 · 1 ) = 1 ) |
| 130 |
129
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 1 = ( 1 · 1 ) ) |
| 131 |
130
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 132 |
12 92 12 108 117 124
|
divmuldivd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 · 1 ) / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 133 |
131 132
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 134 |
68 133
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) · ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( 1 · ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 135 |
14 14 12 109 33 125
|
divmuldivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) · ( 1 / ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) ) |
| 136 |
92 117
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℂ ) |
| 137 |
108 124
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 138 |
136 137
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ∈ ℂ ) |
| 139 |
138
|
mullidd |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 140 |
134 135 139
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · 1 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) · ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 141 |
126 128 140
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) / ( ( 4 · ( 𝑁 · ( 𝑁 + 1 ) ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 142 |
114 141
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 1 ) / ( 1 − ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ) ) = ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 143 |
66 142
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐿 ) ⇝ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |
| 144 |
59
|
biimpi |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 145 |
144
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
| 146 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) |
| 147 |
146
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 148 |
147
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 149 |
146
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
| 150 |
148 149
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 151 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) |
| 152 |
151
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
| 153 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℂ ) |
| 154 |
152
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℂ ) |
| 155 |
153 154
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
| 156 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℂ ) |
| 157 |
155 156
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 158 |
|
0red |
⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
| 159 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
| 160 |
17
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 161 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 162 |
160 161
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 163 |
162 159
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
| 164 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
| 165 |
24
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 166 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 167 |
165 166
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 168 |
159 167
|
ltaddrp2d |
⊢ ( 𝑛 ∈ ℕ → 1 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 169 |
158 159 163 164 168
|
lttrd |
⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 170 |
151 169
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 171 |
170
|
gt0ne0d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 172 |
171
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 173 |
157 172
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 174 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℂ ) |
| 175 |
153 174
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 176 |
175 156
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
| 177 |
30
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
| 178 |
176 177
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
| 179 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 180 |
179
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℕ0 ) |
| 181 |
152
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ0 ) |
| 182 |
180 181
|
nn0mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 183 |
178 182
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 184 |
173 183
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 185 |
3 150 152 184
|
fvmptd3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 186 |
185
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 187 |
169
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 188 |
163 187
|
rereccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 189 |
151 188
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 190 |
189
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 191 |
21 30
|
rereccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
| 192 |
191
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℝ ) |
| 193 |
192 182
|
reexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℝ ) |
| 194 |
193
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℝ ) |
| 195 |
190 194
|
remulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℝ ) |
| 196 |
186 195
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ∈ ℝ ) |
| 197 |
|
readdcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ ) → ( 𝑛 + 𝑖 ) ∈ ℝ ) |
| 198 |
197
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℝ ) ) → ( 𝑛 + 𝑖 ) ∈ ℝ ) |
| 199 |
145 196 198
|
seqcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) ∈ ℝ ) |
| 200 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑘 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 201 |
34
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℂ ) |
| 202 |
201 181
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℂ ) |
| 203 |
4 200 152 202
|
fvmptd3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 204 |
37
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ ) |
| 205 |
204 181
|
reexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℝ ) |
| 206 |
203 205
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ℝ ) |
| 207 |
206
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ℝ ) |
| 208 |
145 207 198
|
seqcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐿 ) ‘ 𝑗 ) ∈ ℝ ) |
| 209 |
31
|
a1i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 2 ∈ ℤ ) |
| 210 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℤ ) |
| 211 |
209 210
|
zmulcld |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 2 · 𝑛 ) ∈ ℤ ) |
| 212 |
|
1exp |
⊢ ( ( 2 · 𝑛 ) ∈ ℤ → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
| 213 |
211 212
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
| 214 |
|
1exp |
⊢ ( 𝑛 ∈ ℤ → ( 1 ↑ 𝑛 ) = 1 ) |
| 215 |
210 214
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ 𝑛 ) = 1 ) |
| 216 |
213 215
|
eqtr4d |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( 1 ↑ ( 2 · 𝑛 ) ) = ( 1 ↑ 𝑛 ) ) |
| 217 |
216
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 ↑ ( 2 · 𝑛 ) ) = ( 1 ↑ 𝑛 ) ) |
| 218 |
176 181 180
|
expmuld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) |
| 219 |
217 218
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 ↑ 𝑛 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) ) |
| 220 |
156 176 177 182
|
expdivd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 221 |
176
|
sqcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℂ ) |
| 222 |
31
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℤ ) |
| 223 |
176 177 222
|
expne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ≠ 0 ) |
| 224 |
156 221 223 181
|
expdivd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) = ( ( 1 ↑ 𝑛 ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ↑ 𝑛 ) ) ) |
| 225 |
219 220 224
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 226 |
225
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) |
| 227 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 228 |
227
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ+ ) |
| 229 |
17
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℝ ) |
| 230 |
152
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℝ ) |
| 231 |
229 230
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℝ ) |
| 232 |
180
|
nn0ge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 2 ) |
| 233 |
181
|
nn0ge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑛 ) |
| 234 |
229 230 232 233
|
mulge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ ( 2 · 𝑛 ) ) |
| 235 |
231 234
|
ge0p1rpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ+ ) |
| 236 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℝ ) |
| 237 |
228
|
rpge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 1 ) |
| 238 |
159 163 168
|
ltled |
⊢ ( 𝑛 ∈ ℕ → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
| 239 |
151 238
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
| 240 |
239
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ≤ ( ( 2 · 𝑛 ) + 1 ) ) |
| 241 |
228 235 236 237 240
|
lediv2ad |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ ( 1 / 1 ) ) |
| 242 |
156
|
div1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / 1 ) = 1 ) |
| 243 |
241 242
|
breqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ 1 ) |
| 244 |
152 188
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℝ ) |
| 245 |
19
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℝ ) |
| 246 |
229 245
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℝ ) |
| 247 |
15 19 120
|
ltled |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 248 |
247
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ 𝑁 ) |
| 249 |
229 245 232 248
|
mulge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 0 ≤ ( 2 · 𝑁 ) ) |
| 250 |
246 249
|
ge0p1rpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℝ+ ) |
| 251 |
250 222
|
rpexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ+ ) |
| 252 |
251
|
rpreccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 253 |
210
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℤ ) |
| 254 |
252 253
|
rpexpcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ∈ ℝ+ ) |
| 255 |
244 236 254
|
lemul1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ≤ 1 ↔ ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) ) |
| 256 |
243 255
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ) |
| 257 |
202
|
mullidd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) = ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 258 |
256 257
|
breqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) ≤ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 259 |
226 258
|
eqbrtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ≤ ( ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ 2 ) ) ↑ 𝑛 ) ) |
| 260 |
259 185 203
|
3brtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ≤ ( 𝐿 ‘ 𝑛 ) ) |
| 261 |
260
|
adantlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) ≤ ( 𝐿 ‘ 𝑛 ) ) |
| 262 |
145 196 207 261
|
serle |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) ≤ ( seq 1 ( + , 𝐿 ) ‘ 𝑗 ) ) |
| 263 |
5 6 8 143 199 208 262
|
climle |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑁 · ( 𝑁 + 1 ) ) ) ) ) |