Metamath Proof Explorer


Theorem stirlinglem12

Description: The sequence B is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem12.1 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) )
stirlinglem12.2 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴𝑛 ) ) )
stirlinglem12.3 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) )
Assertion stirlinglem12 ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵𝑁 ) )

Proof

Step Hyp Ref Expression
1 stirlinglem12.1 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) )
2 stirlinglem12.2 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴𝑛 ) ) )
3 stirlinglem12.3 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) )
4 1nn 1 ∈ ℕ
5 1 stirlinglem2 ( 1 ∈ ℕ → ( 𝐴 ‘ 1 ) ∈ ℝ+ )
6 relogcl ( ( 𝐴 ‘ 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ )
7 4 5 6 mp2b ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ
8 nfcv 𝑛 1
9 nfcv 𝑛 log
10 nfmpt1 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) )
11 1 10 nfcxfr 𝑛 𝐴
12 11 8 nffv 𝑛 ( 𝐴 ‘ 1 )
13 9 12 nffv 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) )
14 2fveq3 ( 𝑛 = 1 → ( log ‘ ( 𝐴𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) )
15 8 13 14 2 fvmptf ( ( 1 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) → ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) )
16 4 7 15 mp2an ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) )
17 16 7 eqeltri ( 𝐵 ‘ 1 ) ∈ ℝ
18 17 a1i ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 1 ) ∈ ℝ )
19 1 stirlinglem2 ( 𝑁 ∈ ℕ → ( 𝐴𝑁 ) ∈ ℝ+ )
20 19 relogcld ( 𝑁 ∈ ℕ → ( log ‘ ( 𝐴𝑁 ) ) ∈ ℝ )
21 nfcv 𝑛 𝑁
22 11 21 nffv 𝑛 ( 𝐴𝑁 )
23 9 22 nffv 𝑛 ( log ‘ ( 𝐴𝑁 ) )
24 2fveq3 ( 𝑛 = 𝑁 → ( log ‘ ( 𝐴𝑛 ) ) = ( log ‘ ( 𝐴𝑁 ) ) )
25 21 23 24 2 fvmptf ( ( 𝑁 ∈ ℕ ∧ ( log ‘ ( 𝐴𝑁 ) ) ∈ ℝ ) → ( 𝐵𝑁 ) = ( log ‘ ( 𝐴𝑁 ) ) )
26 20 25 mpdan ( 𝑁 ∈ ℕ → ( 𝐵𝑁 ) = ( log ‘ ( 𝐴𝑁 ) ) )
27 26 20 eqeltrd ( 𝑁 ∈ ℕ → ( 𝐵𝑁 ) ∈ ℝ )
28 4re 4 ∈ ℝ
29 4ne0 4 ≠ 0
30 28 29 rereccli ( 1 / 4 ) ∈ ℝ
31 30 a1i ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℝ )
32 fveq2 ( 𝑘 = 𝑗 → ( 𝐵𝑘 ) = ( 𝐵𝑗 ) )
33 fveq2 ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐵𝑘 ) = ( 𝐵 ‘ ( 𝑗 + 1 ) ) )
34 fveq2 ( 𝑘 = 1 → ( 𝐵𝑘 ) = ( 𝐵 ‘ 1 ) )
35 fveq2 ( 𝑘 = 𝑁 → ( 𝐵𝑘 ) = ( 𝐵𝑁 ) )
36 elnnuz ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ ‘ 1 ) )
37 36 biimpi ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ ‘ 1 ) )
38 elfznn ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ )
39 1 stirlinglem2 ( 𝑘 ∈ ℕ → ( 𝐴𝑘 ) ∈ ℝ+ )
40 38 39 syl ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴𝑘 ) ∈ ℝ+ )
41 40 relogcld ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( log ‘ ( 𝐴𝑘 ) ) ∈ ℝ )
42 nfcv 𝑛 𝑘
43 11 42 nffv 𝑛 ( 𝐴𝑘 )
44 9 43 nffv 𝑛 ( log ‘ ( 𝐴𝑘 ) )
45 2fveq3 ( 𝑛 = 𝑘 → ( log ‘ ( 𝐴𝑛 ) ) = ( log ‘ ( 𝐴𝑘 ) ) )
46 42 44 45 2 fvmptf ( ( 𝑘 ∈ ℕ ∧ ( log ‘ ( 𝐴𝑘 ) ) ∈ ℝ ) → ( 𝐵𝑘 ) = ( log ‘ ( 𝐴𝑘 ) ) )
47 38 41 46 syl2anc ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐵𝑘 ) = ( log ‘ ( 𝐴𝑘 ) ) )
48 47 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵𝑘 ) = ( log ‘ ( 𝐴𝑘 ) ) )
49 40 rpcnd ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴𝑘 ) ∈ ℂ )
50 49 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝑘 ) ∈ ℂ )
51 39 rpne0d ( 𝑘 ∈ ℕ → ( 𝐴𝑘 ) ≠ 0 )
52 38 51 syl ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴𝑘 ) ≠ 0 )
53 52 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝑘 ) ≠ 0 )
54 50 53 logcld ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ ( 𝐴𝑘 ) ) ∈ ℂ )
55 48 54 eqeltrd ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵𝑘 ) ∈ ℂ )
56 32 33 34 35 37 55 telfsumo ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐵 ‘ 1 ) − ( 𝐵𝑁 ) ) )
57 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
58 fzoval ( 𝑁 ∈ ℤ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) )
59 57 58 syl ( 𝑁 ∈ ℕ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) )
60 59 sumeq1d ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) )
61 56 60 eqtr3d ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 𝐵𝑁 ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) )
62 fzfid ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin )
63 elfznn ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ )
64 63 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ )
65 1 stirlinglem2 ( 𝑗 ∈ ℕ → ( 𝐴𝑗 ) ∈ ℝ+ )
66 65 relogcld ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴𝑗 ) ) ∈ ℝ )
67 nfcv 𝑛 𝑗
68 11 67 nffv 𝑛 ( 𝐴𝑗 )
69 9 68 nffv 𝑛 ( log ‘ ( 𝐴𝑗 ) )
70 2fveq3 ( 𝑛 = 𝑗 → ( log ‘ ( 𝐴𝑛 ) ) = ( log ‘ ( 𝐴𝑗 ) ) )
71 67 69 70 2 fvmptf ( ( 𝑗 ∈ ℕ ∧ ( log ‘ ( 𝐴𝑗 ) ) ∈ ℝ ) → ( 𝐵𝑗 ) = ( log ‘ ( 𝐴𝑗 ) ) )
72 66 71 mpdan ( 𝑗 ∈ ℕ → ( 𝐵𝑗 ) = ( log ‘ ( 𝐴𝑗 ) ) )
73 72 66 eqeltrd ( 𝑗 ∈ ℕ → ( 𝐵𝑗 ) ∈ ℝ )
74 64 73 syl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵𝑗 ) ∈ ℝ )
75 peano2nn ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ )
76 1 stirlinglem2 ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ )
77 75 76 syl ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ )
78 77 relogcld ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ )
79 nfcv 𝑛 ( 𝑗 + 1 )
80 11 79 nffv 𝑛 ( 𝐴 ‘ ( 𝑗 + 1 ) )
81 9 80 nffv 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) )
82 2fveq3 ( 𝑛 = ( 𝑗 + 1 ) → ( log ‘ ( 𝐴𝑛 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) )
83 79 81 82 2 fvmptf ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) )
84 75 78 83 syl2anc ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) )
85 84 78 eqeltrd ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ )
86 63 85 syl ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ )
87 86 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ )
88 74 87 resubcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ )
89 62 88 fsumrecl ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ )
90 30 a1i ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / 4 ) ∈ ℝ )
91 63 nnred ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℝ )
92 1red ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 1 ∈ ℝ )
93 91 92 readdcld ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℝ )
94 91 93 remulcld ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ )
95 91 recnd ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℂ )
96 1cnd ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 1 ∈ ℂ )
97 95 96 addcld ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℂ )
98 63 nnne0d ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ≠ 0 )
99 75 nnne0d ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ≠ 0 )
100 63 99 syl ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ≠ 0 )
101 95 97 98 100 mulne0d ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 )
102 94 101 rereccld ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ )
103 102 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ )
104 90 103 remulcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ∈ ℝ )
105 62 104 fsumrecl ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ∈ ℝ )
106 eqid ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑖 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑖 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑖 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑖 ) ) ) )
107 eqid ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑗 ) + 1 ) ↑ 2 ) ) ↑ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑗 ) + 1 ) ↑ 2 ) ) ↑ 𝑖 ) )
108 1 2 106 107 stirlinglem10 ( 𝑗 ∈ ℕ → ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) )
109 64 108 syl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) )
110 62 88 104 109 fsumle ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) )
111 62 103 fsumrecl ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ )
112 1red ( 𝑁 ∈ ℕ → 1 ∈ ℝ )
113 4pos 0 < 4
114 28 113 elrpii 4 ∈ ℝ+
115 114 a1i ( 𝑁 ∈ ℕ → 4 ∈ ℝ+ )
116 0red ( 𝑁 ∈ ℕ → 0 ∈ ℝ )
117 0lt1 0 < 1
118 117 a1i ( 𝑁 ∈ ℕ → 0 < 1 )
119 116 112 118 ltled ( 𝑁 ∈ ℕ → 0 ≤ 1 )
120 112 115 119 divge0d ( 𝑁 ∈ ℕ → 0 ≤ ( 1 / 4 ) )
121 eqid ( ℤ𝑁 ) = ( ℤ𝑁 )
122 eluznn ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 𝑗 ∈ ℕ )
123 3 a1i ( 𝑗 ∈ ℕ → 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) )
124 simpr ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → 𝑛 = 𝑗 )
125 124 oveq1d ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) )
126 124 125 oveq12d ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑗 · ( 𝑗 + 1 ) ) )
127 126 oveq2d ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
128 id ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ )
129 nnre ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ )
130 1red ( 𝑗 ∈ ℕ → 1 ∈ ℝ )
131 129 130 readdcld ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℝ )
132 129 131 remulcld ( 𝑗 ∈ ℕ → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ )
133 nncn ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ )
134 1cnd ( 𝑗 ∈ ℕ → 1 ∈ ℂ )
135 133 134 addcld ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℂ )
136 nnne0 ( 𝑗 ∈ ℕ → 𝑗 ≠ 0 )
137 133 135 136 99 mulne0d ( 𝑗 ∈ ℕ → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 )
138 132 137 rereccld ( 𝑗 ∈ ℕ → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ )
139 123 127 128 138 fvmptd ( 𝑗 ∈ ℕ → ( 𝐹𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
140 122 139 syl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝐹𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
141 122 nnred ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 𝑗 ∈ ℝ )
142 1red ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 1 ∈ ℝ )
143 141 142 readdcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℝ )
144 141 143 remulcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ )
145 141 recnd ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 𝑗 ∈ ℂ )
146 1cnd ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 1 ∈ ℂ )
147 145 146 addcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℂ )
148 122 nnne0d ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 𝑗 ≠ 0 )
149 122 99 syl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 + 1 ) ≠ 0 )
150 145 147 148 149 mulne0d ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 )
151 144 150 rereccld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ )
152 seqeq1 ( 𝑁 = 1 → seq 𝑁 ( + , 𝐹 ) = seq 1 ( + , 𝐹 ) )
153 3 trireciplem seq 1 ( + , 𝐹 ) ⇝ 1
154 climrel Rel ⇝
155 154 releldmi ( seq 1 ( + , 𝐹 ) ⇝ 1 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ )
156 153 155 mp1i ( 𝑁 = 1 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ )
157 152 156 eqeltrd ( 𝑁 = 1 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ )
158 157 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ )
159 simpl ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ℕ )
160 simpr ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ¬ 𝑁 = 1 )
161 elnn1uz2 ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) )
162 159 161 sylib ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ ‘ 2 ) ) )
163 162 ord ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ¬ 𝑁 = 1 → 𝑁 ∈ ( ℤ ‘ 2 ) ) )
164 160 163 mpd ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
165 uz2m1nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ )
166 164 165 syl ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 − 1 ) ∈ ℕ )
167 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
168 167 adantr ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 𝑁 ∈ ℂ )
169 1cnd ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 1 ∈ ℂ )
170 168 169 npcand ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
171 170 eqcomd ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) )
172 171 seqeq1d ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) = seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) )
173 nnuz ℕ = ( ℤ ‘ 1 )
174 id ( ( 𝑁 − 1 ) ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ )
175 138 recnd ( 𝑗 ∈ ℕ → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ )
176 139 175 eqeltrd ( 𝑗 ∈ ℕ → ( 𝐹𝑗 ) ∈ ℂ )
177 176 adantl ( ( ( 𝑁 − 1 ) ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∈ ℂ )
178 153 a1i ( ( 𝑁 − 1 ) ∈ ℕ → seq 1 ( + , 𝐹 ) ⇝ 1 )
179 173 174 177 178 clim2ser ( ( 𝑁 − 1 ) ∈ ℕ → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) )
180 179 adantl ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) )
181 172 180 eqbrtrd ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) )
182 154 releldmi ( seq 𝑁 ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ )
183 181 182 syl ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ )
184 159 166 183 syl2anc ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ )
185 158 184 pm2.61dan ( 𝑁 ∈ ℕ → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ )
186 121 57 140 151 185 isumrecl ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( ℤ𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ )
187 122 nnrpd ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 𝑗 ∈ ℝ+ )
188 187 rpge0d ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 0 ≤ 𝑗 )
189 141 188 ge0p1rpd ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℝ+ )
190 187 189 rpmulcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ+ )
191 119 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 0 ≤ 1 )
192 142 190 191 divge0d ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑁 ) ) → 0 ≤ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
193 121 57 140 151 185 192 isumge0 ( 𝑁 ∈ ℕ → 0 ≤ Σ 𝑗 ∈ ( ℤ𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
194 116 186 111 193 leadd2dd ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) ≤ ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + Σ 𝑗 ∈ ( ℤ𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) )
195 111 recnd ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ )
196 195 addid1d ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
197 196 eqcomd ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) )
198 id ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ )
199 139 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
200 133 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ )
201 1cnd ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ )
202 200 201 addcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℂ )
203 200 202 mulcld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℂ )
204 136 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ≠ 0 )
205 99 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ≠ 0 )
206 200 202 204 205 mulne0d ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 )
207 203 206 reccld ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ )
208 153 155 mp1i ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐹 ) ∈ dom ⇝ )
209 173 121 198 199 207 208 isumsplit ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + Σ 𝑗 ∈ ( ℤ𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) )
210 194 197 209 3brtr4d ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ≤ Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
211 1zzd ( ⊤ → 1 ∈ ℤ )
212 139 adantl ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) )
213 175 adantl ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ )
214 153 a1i ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ 1 )
215 173 211 212 213 214 isumclim ( ⊤ → Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = 1 )
216 215 mptru Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = 1
217 210 216 breqtrdi ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ≤ 1 )
218 111 112 31 120 217 lemul2ad ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ≤ ( ( 1 / 4 ) · 1 ) )
219 4cn 4 ∈ ℂ
220 219 a1i ( 𝑁 ∈ ℕ → 4 ∈ ℂ )
221 113 a1i ( 𝑁 ∈ ℕ → 0 < 4 )
222 221 gt0ne0d ( 𝑁 ∈ ℕ → 4 ≠ 0 )
223 220 222 reccld ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℂ )
224 103 recnd ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ )
225 62 223 224 fsummulc2 ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) )
226 223 mulid1d ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · 1 ) = ( 1 / 4 ) )
227 218 225 226 3brtr3d ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ≤ ( 1 / 4 ) )
228 89 105 31 110 227 letrd ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 1 / 4 ) )
229 61 228 eqbrtrd ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 𝐵𝑁 ) ) ≤ ( 1 / 4 ) )
230 18 27 31 229 subled ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵𝑁 ) )