| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem12.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 2 |
|
stirlinglem12.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 3 |
|
stirlinglem12.3 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 4 |
|
1nn |
⊢ 1 ∈ ℕ |
| 5 |
1
|
stirlinglem2 |
⊢ ( 1 ∈ ℕ → ( 𝐴 ‘ 1 ) ∈ ℝ+ ) |
| 6 |
|
relogcl |
⊢ ( ( 𝐴 ‘ 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) |
| 7 |
4 5 6
|
mp2b |
⊢ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑛 log |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 11 |
1 10
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
| 12 |
11 8
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) |
| 13 |
9 12
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 14 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 15 |
8 13 14 2
|
fvmptf |
⊢ ( ( 1 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) → ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 16 |
4 7 15
|
mp2an |
⊢ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 17 |
16 7
|
eqeltri |
⊢ ( 𝐵 ‘ 1 ) ∈ ℝ |
| 18 |
17
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 1 ) ∈ ℝ ) |
| 19 |
1
|
stirlinglem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) ∈ ℝ+ ) |
| 20 |
19
|
relogcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑁 |
| 22 |
11 21
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑁 ) |
| 23 |
9 22
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑁 ) ) |
| 24 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 25 |
21 23 24 2
|
fvmptf |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑁 ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 26 |
20 25
|
mpdan |
⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 𝑁 ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 27 |
26 20
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 𝑁 ) ∈ ℝ ) |
| 28 |
|
4re |
⊢ 4 ∈ ℝ |
| 29 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 30 |
28 29
|
rereccli |
⊢ ( 1 / 4 ) ∈ ℝ |
| 31 |
30
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℝ ) |
| 32 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑗 ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) |
| 34 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 1 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑁 ) ) |
| 36 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 37 |
36
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 38 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
| 39 |
1
|
stirlinglem2 |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ∈ ℝ+ ) |
| 40 |
38 39
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ+ ) |
| 41 |
40
|
relogcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 42 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 43 |
11 42
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 44 |
9 43
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑘 ) ) |
| 45 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 46 |
42 44 45 2
|
fvmptf |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 47 |
38 41 46
|
syl2anc |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 49 |
40
|
rpcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 51 |
39
|
rpne0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 52 |
38 51
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 54 |
50 53
|
logcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 55 |
48 54
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 56 |
32 33 34 35 37 55
|
telfsumo |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) = ( ( 𝐵 ‘ 1 ) − ( 𝐵 ‘ 𝑁 ) ) ) |
| 57 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 58 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 59 |
57 58
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 ..^ 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 60 |
59
|
sumeq1d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ) |
| 61 |
56 60
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 𝐵 ‘ 𝑁 ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ) |
| 62 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
| 63 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ ) |
| 64 |
63
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 65 |
1
|
stirlinglem2 |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ 𝑗 ) ∈ ℝ+ ) |
| 66 |
65
|
relogcld |
⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ∈ ℝ ) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑗 |
| 68 |
11 67
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) |
| 69 |
9 68
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
| 70 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑗 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 71 |
67 69 70 2
|
fvmptf |
⊢ ( ( 𝑗 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑗 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 72 |
66 71
|
mpdan |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 73 |
72 66
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 74 |
64 73
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 75 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
| 76 |
1
|
stirlinglem2 |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 77 |
75 76
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 78 |
77
|
relogcld |
⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) |
| 80 |
11 79
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗 + 1 ) ) |
| 81 |
9 80
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 82 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 83 |
79 81 82 2
|
fvmptf |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 84 |
75 78 83
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 85 |
84 78
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 86 |
63 85
|
syl |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 88 |
74 87
|
resubcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 89 |
62 88
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 90 |
30
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / 4 ) ∈ ℝ ) |
| 91 |
63
|
nnred |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℝ ) |
| 92 |
|
1red |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 1 ∈ ℝ ) |
| 93 |
91 92
|
readdcld |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 94 |
91 93
|
remulcld |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 95 |
91
|
recnd |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℂ ) |
| 96 |
|
1cnd |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 1 ∈ ℂ ) |
| 97 |
95 96
|
addcld |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 98 |
63
|
nnne0d |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑗 ≠ 0 ) |
| 99 |
75
|
nnne0d |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ≠ 0 ) |
| 100 |
63 99
|
syl |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 101 |
95 97 98 100
|
mulne0d |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 102 |
94 101
|
rereccld |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 103 |
102
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 104 |
90 103
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 105 |
62 104
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ∈ ℝ ) |
| 106 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑖 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑖 ) ) ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑖 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑖 ) ) ) ) |
| 107 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑗 ) + 1 ) ↑ 2 ) ) ↑ 𝑖 ) ) = ( 𝑖 ∈ ℕ ↦ ( ( 1 / ( ( ( 2 · 𝑗 ) + 1 ) ↑ 2 ) ) ↑ 𝑖 ) ) |
| 108 |
1 2 106 107
|
stirlinglem10 |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 109 |
64 108
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 110 |
62 88 104 109
|
fsumle |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 111 |
62 103
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 112 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
| 113 |
|
4pos |
⊢ 0 < 4 |
| 114 |
28 113
|
elrpii |
⊢ 4 ∈ ℝ+ |
| 115 |
114
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℝ+ ) |
| 116 |
|
0red |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
| 117 |
|
0lt1 |
⊢ 0 < 1 |
| 118 |
117
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
| 119 |
116 112 118
|
ltled |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 1 ) |
| 120 |
112 115 119
|
divge0d |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 1 / 4 ) ) |
| 121 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 122 |
|
eluznn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℕ ) |
| 123 |
3
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 124 |
|
simpr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → 𝑛 = 𝑗 ) |
| 125 |
124
|
oveq1d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) ) |
| 126 |
124 125
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑗 · ( 𝑗 + 1 ) ) ) |
| 127 |
126
|
oveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = 𝑗 ) → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 128 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
| 129 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
| 130 |
|
1red |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) |
| 131 |
129 130
|
readdcld |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℝ ) |
| 132 |
129 131
|
remulcld |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 133 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
| 134 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) |
| 135 |
133 134
|
addcld |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℂ ) |
| 136 |
|
nnne0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ≠ 0 ) |
| 137 |
133 135 136 99
|
mulne0d |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 138 |
132 137
|
rereccld |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 139 |
123 127 128 138
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 140 |
122 139
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 141 |
122
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ ) |
| 142 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 1 ∈ ℝ ) |
| 143 |
141 142
|
readdcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℝ ) |
| 144 |
141 143
|
remulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 145 |
141
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℂ ) |
| 146 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 1 ∈ ℂ ) |
| 147 |
145 146
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 148 |
122
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ≠ 0 ) |
| 149 |
122 99
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 150 |
145 147 148 149
|
mulne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 151 |
144 150
|
rereccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 152 |
|
seqeq1 |
⊢ ( 𝑁 = 1 → seq 𝑁 ( + , 𝐹 ) = seq 1 ( + , 𝐹 ) ) |
| 153 |
3
|
trireciplem |
⊢ seq 1 ( + , 𝐹 ) ⇝ 1 |
| 154 |
|
climrel |
⊢ Rel ⇝ |
| 155 |
154
|
releldmi |
⊢ ( seq 1 ( + , 𝐹 ) ⇝ 1 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 156 |
153 155
|
mp1i |
⊢ ( 𝑁 = 1 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 157 |
152 156
|
eqeltrd |
⊢ ( 𝑁 = 1 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 158 |
157
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 = 1 ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 159 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ℕ ) |
| 160 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ¬ 𝑁 = 1 ) |
| 161 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 162 |
159 161
|
sylib |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 163 |
162
|
ord |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ¬ 𝑁 = 1 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 164 |
160 163
|
mpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 165 |
|
uz2m1nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 166 |
164 165
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 167 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 168 |
167
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 169 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 1 ∈ ℂ ) |
| 170 |
168 169
|
npcand |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 171 |
170
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
| 172 |
171
|
seqeq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) = seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ) |
| 173 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 174 |
|
id |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ ) |
| 175 |
138
|
recnd |
⊢ ( 𝑗 ∈ ℕ → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 176 |
139 175
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 177 |
176
|
adantl |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 178 |
153
|
a1i |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ → seq 1 ( + , 𝐹 ) ⇝ 1 ) |
| 179 |
173 174 177 178
|
clim2ser |
⊢ ( ( 𝑁 − 1 ) ∈ ℕ → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 180 |
179
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 181 |
172 180
|
eqbrtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) ) |
| 182 |
154
|
releldmi |
⊢ ( seq 𝑁 ( + , 𝐹 ) ⇝ ( 1 − ( seq 1 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 183 |
181 182
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑁 − 1 ) ∈ ℕ ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 184 |
159 166 183
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 185 |
158 184
|
pm2.61dan |
⊢ ( 𝑁 ∈ ℕ → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 186 |
121 57 140 151 185
|
isumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 187 |
122
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑗 ∈ ℝ+ ) |
| 188 |
187
|
rpge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ 𝑗 ) |
| 189 |
141 188
|
ge0p1rpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 + 1 ) ∈ ℝ+ ) |
| 190 |
187 189
|
rpmulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 191 |
119
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ 1 ) |
| 192 |
142 190 191
|
divge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 193 |
121 57 140 151 185 192
|
isumge0 |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 194 |
116 186 111 193
|
leadd2dd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) ≤ ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 195 |
111
|
recnd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 196 |
195
|
addridd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 197 |
196
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + 0 ) ) |
| 198 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 199 |
139
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 200 |
133
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 201 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) |
| 202 |
200 201
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℂ ) |
| 203 |
200 202
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 204 |
136
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ≠ 0 ) |
| 205 |
99
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ≠ 0 ) |
| 206 |
200 202 204 205
|
mulne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · ( 𝑗 + 1 ) ) ≠ 0 ) |
| 207 |
203 206
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 208 |
153 155
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 209 |
173 121 198 199 207 208
|
isumsplit |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) + Σ 𝑗 ∈ ( ℤ≥ ‘ 𝑁 ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 210 |
194 197 209
|
3brtr4d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ≤ Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 211 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 212 |
139
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) |
| 213 |
175
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 214 |
153
|
a1i |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) ⇝ 1 ) |
| 215 |
173 211 212 213 214
|
isumclim |
⊢ ( ⊤ → Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = 1 ) |
| 216 |
215
|
mptru |
⊢ Σ 𝑗 ∈ ℕ ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) = 1 |
| 217 |
210 216
|
breqtrdi |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ≤ 1 ) |
| 218 |
111 112 31 120 217
|
lemul2ad |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ≤ ( ( 1 / 4 ) · 1 ) ) |
| 219 |
|
4cn |
⊢ 4 ∈ ℂ |
| 220 |
219
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 4 ∈ ℂ ) |
| 221 |
113
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 4 ) |
| 222 |
221
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → 4 ≠ 0 ) |
| 223 |
220 222
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 4 ) ∈ ℂ ) |
| 224 |
103
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 225 |
62 223 224
|
fsummulc2 |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ) |
| 226 |
223
|
mulridd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 4 ) · 1 ) = ( 1 / 4 ) ) |
| 227 |
218 225 226
|
3brtr3d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 1 / 4 ) · ( 1 / ( 𝑗 · ( 𝑗 + 1 ) ) ) ) ≤ ( 1 / 4 ) ) |
| 228 |
89 105 31 110 227
|
letrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( ( 𝐵 ‘ 𝑗 ) − ( 𝐵 ‘ ( 𝑗 + 1 ) ) ) ≤ ( 1 / 4 ) ) |
| 229 |
61 228
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 𝐵 ‘ 𝑁 ) ) ≤ ( 1 / 4 ) ) |
| 230 |
18 27 31 229
|
subled |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑁 ) ) |