| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem13.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 2 |
|
stirlinglem13.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
2
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 6 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 7 |
1
|
stirlinglem2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
| 8 |
7
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
| 10 |
6 9
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 ∈ ℝ ) |
| 11 |
10
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) → 𝑦 ∈ ℝ ) |
| 12 |
5 11
|
sylbi |
⊢ ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ ℝ ) |
| 13 |
12
|
ssriv |
⊢ ran 𝐵 ⊆ ℝ |
| 14 |
|
1nn |
⊢ 1 ∈ ℕ |
| 15 |
1
|
stirlinglem2 |
⊢ ( 1 ∈ ℕ → ( 𝐴 ‘ 1 ) ∈ ℝ+ ) |
| 16 |
|
relogcl |
⊢ ( ( 𝐴 ‘ 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) |
| 17 |
14 15 16
|
mp2b |
⊢ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑛 log |
| 20 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 21 |
1 20
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
| 22 |
21 18
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) |
| 23 |
19 22
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 24 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 25 |
18 23 24 2
|
fvmptf |
⊢ ( ( 1 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) → ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 26 |
14 17 25
|
mp2an |
⊢ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) |
| 27 |
|
2fveq3 |
⊢ ( 𝑗 = 1 → ( log ‘ ( 𝐴 ‘ 𝑗 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
| 28 |
27
|
rspceeqv |
⊢ ( ( 1 ∈ ℕ ∧ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 29 |
14 26 28
|
mp2an |
⊢ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
| 30 |
26 17
|
eqeltri |
⊢ ( 𝐵 ‘ 1 ) ∈ ℝ |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑗 ( log ‘ ( 𝐴 ‘ 𝑛 ) ) |
| 32 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑗 |
| 33 |
21 32
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) |
| 34 |
19 33
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
| 35 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑗 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 36 |
31 34 35
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 37 |
2 36
|
eqtri |
⊢ 𝐵 = ( 𝑗 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 38 |
37
|
elrnmpt |
⊢ ( ( 𝐵 ‘ 1 ) ∈ ℝ → ( ( 𝐵 ‘ 1 ) ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) ) |
| 39 |
30 38
|
ax-mp |
⊢ ( ( 𝐵 ‘ 1 ) ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
| 40 |
29 39
|
mpbir |
⊢ ( 𝐵 ‘ 1 ) ∈ ran 𝐵 |
| 41 |
40
|
ne0ii |
⊢ ran 𝐵 ≠ ∅ |
| 42 |
|
4re |
⊢ 4 ∈ ℝ |
| 43 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 44 |
42 43
|
rereccli |
⊢ ( 1 / 4 ) ∈ ℝ |
| 45 |
30 44
|
resubcli |
⊢ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ∈ ℝ |
| 46 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 47 |
1 2 46
|
stirlinglem12 |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 48 |
47
|
rgen |
⊢ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) |
| 49 |
|
breq1 |
⊢ ( 𝑥 = ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) → ( 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ↔ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 50 |
49
|
ralbidv |
⊢ ( 𝑥 = ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) → ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ↔ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 51 |
50
|
rspcev |
⊢ ( ( ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 52 |
45 48 51
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) |
| 53 |
|
simpr |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → 𝑦 ∈ ran 𝐵 ) |
| 54 |
8
|
rgen |
⊢ ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ |
| 55 |
2
|
fnmpt |
⊢ ( ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ → 𝐵 Fn ℕ ) |
| 56 |
|
fvelrnb |
⊢ ( 𝐵 Fn ℕ → ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) ) |
| 57 |
54 55 56
|
mp2b |
⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
| 58 |
53 57
|
sylib |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
| 59 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) |
| 60 |
|
nfv |
⊢ Ⅎ 𝑗 𝑦 ∈ ran 𝐵 |
| 61 |
59 60
|
nfan |
⊢ Ⅎ 𝑗 ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) |
| 62 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ≤ 𝑦 |
| 63 |
|
simp1l |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 64 |
|
simp2 |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑗 ∈ ℕ ) |
| 65 |
|
rsp |
⊢ ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ( 𝑗 ∈ ℕ → 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
| 66 |
63 64 65
|
sylc |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 67 |
|
simp3 |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
| 68 |
66 67
|
breqtrd |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 69 |
68
|
3exp |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 𝑗 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
| 70 |
61 62 69
|
rexlimd |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ( ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
| 71 |
58 70
|
mpd |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → 𝑥 ≤ 𝑦 ) |
| 72 |
71
|
ralrimiva |
⊢ ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) |
| 73 |
72
|
reximi |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) |
| 74 |
52 73
|
ax-mp |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 |
| 75 |
|
infrecl |
⊢ ( ( ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) → inf ( ran 𝐵 , ℝ , < ) ∈ ℝ ) |
| 76 |
13 41 74 75
|
mp3an |
⊢ inf ( ran 𝐵 , ℝ , < ) ∈ ℝ |
| 77 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 78 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 79 |
2 8
|
fmpti |
⊢ 𝐵 : ℕ ⟶ ℝ |
| 80 |
79
|
a1i |
⊢ ( ⊤ → 𝐵 : ℕ ⟶ ℝ ) |
| 81 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
| 82 |
1
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 83 |
|
simpr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → 𝑛 = ( 𝑗 + 1 ) ) |
| 84 |
83
|
fveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ! ‘ 𝑛 ) = ( ! ‘ ( 𝑗 + 1 ) ) ) |
| 85 |
83
|
oveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑗 + 1 ) ) ) |
| 86 |
85
|
fveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ) |
| 87 |
83
|
oveq1d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( 𝑛 / e ) = ( ( 𝑗 + 1 ) / e ) ) |
| 88 |
87 83
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) |
| 89 |
86 88
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) |
| 90 |
84 89
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 91 |
81
|
nnnn0d |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 92 |
|
faccl |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 93 |
|
nncn |
⊢ ( ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 94 |
91 92 93
|
3syl |
⊢ ( 𝑗 ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 95 |
|
2cnd |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) |
| 96 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
| 97 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) |
| 98 |
96 97
|
addcld |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℂ ) |
| 99 |
95 98
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 100 |
99
|
sqrtcld |
⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 101 |
|
ere |
⊢ e ∈ ℝ |
| 102 |
101
|
recni |
⊢ e ∈ ℂ |
| 103 |
102
|
a1i |
⊢ ( 𝑗 ∈ ℕ → e ∈ ℂ ) |
| 104 |
|
0re |
⊢ 0 ∈ ℝ |
| 105 |
|
epos |
⊢ 0 < e |
| 106 |
104 105
|
gtneii |
⊢ e ≠ 0 |
| 107 |
106
|
a1i |
⊢ ( 𝑗 ∈ ℕ → e ≠ 0 ) |
| 108 |
98 103 107
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ∈ ℂ ) |
| 109 |
108 91
|
expcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 110 |
100 109
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
| 111 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 112 |
111
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ+ ) |
| 113 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
| 114 |
104
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 0 ∈ ℝ ) |
| 115 |
|
1red |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) |
| 116 |
|
0le1 |
⊢ 0 ≤ 1 |
| 117 |
116
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 0 ≤ 1 ) |
| 118 |
|
nnge1 |
⊢ ( 𝑗 ∈ ℕ → 1 ≤ 𝑗 ) |
| 119 |
114 115 113 117 118
|
letrd |
⊢ ( 𝑗 ∈ ℕ → 0 ≤ 𝑗 ) |
| 120 |
113 119
|
ge0p1rpd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℝ+ ) |
| 121 |
112 120
|
rpmulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 122 |
121
|
sqrtgt0d |
⊢ ( 𝑗 ∈ ℕ → 0 < ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ) |
| 123 |
122
|
gt0ne0d |
⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ≠ 0 ) |
| 124 |
81
|
nnne0d |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ≠ 0 ) |
| 125 |
98 103 124 107
|
divne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ≠ 0 ) |
| 126 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
| 127 |
126
|
peano2zd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℤ ) |
| 128 |
108 125 127
|
expne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ≠ 0 ) |
| 129 |
100 109 123 128
|
mulne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ≠ 0 ) |
| 130 |
94 110 129
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℂ ) |
| 131 |
82 90 81 130
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 132 |
|
nnrp |
⊢ ( ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 133 |
91 92 132
|
3syl |
⊢ ( 𝑗 ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 134 |
121
|
rpsqrtcld |
⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ∈ ℝ+ ) |
| 135 |
|
epr |
⊢ e ∈ ℝ+ |
| 136 |
135
|
a1i |
⊢ ( 𝑗 ∈ ℕ → e ∈ ℝ+ ) |
| 137 |
120 136
|
rpdivcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ∈ ℝ+ ) |
| 138 |
137 127
|
rpexpcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 139 |
134 138
|
rpmulcld |
⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ+ ) |
| 140 |
133 139
|
rpdivcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ+ ) |
| 141 |
131 140
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
| 142 |
141
|
relogcld |
⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
| 143 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) |
| 144 |
21 143
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗 + 1 ) ) |
| 145 |
19 144
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
| 146 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 147 |
143 145 146 2
|
fvmptf |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 148 |
81 142 147
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
| 149 |
148 142
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
| 150 |
79
|
ffvelcdmi |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
| 151 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑧 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑧 ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑧 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑧 ) ) ) ) |
| 152 |
1 2 151
|
stirlinglem11 |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) < ( 𝐵 ‘ 𝑗 ) ) |
| 153 |
149 150 152
|
ltled |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 154 |
153
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 155 |
52
|
a1i |
⊢ ( ⊤ → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
| 156 |
77 78 80 154 155
|
climinf |
⊢ ( ⊤ → 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) |
| 157 |
156
|
mptru |
⊢ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) |
| 158 |
|
breq2 |
⊢ ( 𝑑 = inf ( ran 𝐵 , ℝ , < ) → ( 𝐵 ⇝ 𝑑 ↔ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) ) |
| 159 |
158
|
rspcev |
⊢ ( ( inf ( ran 𝐵 , ℝ , < ) ∈ ℝ ∧ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) → ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 ) |
| 160 |
76 157 159
|
mp2an |
⊢ ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 |