Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem13.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
2 |
|
stirlinglem13.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
2
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
7 |
1
|
stirlinglem2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
8 |
7
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
10 |
6 9
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) → 𝑦 ∈ ℝ ) |
11 |
10
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℕ 𝑦 = ( log ‘ ( 𝐴 ‘ 𝑛 ) ) → 𝑦 ∈ ℝ ) |
12 |
5 11
|
sylbi |
⊢ ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ ℝ ) |
13 |
12
|
ssriv |
⊢ ran 𝐵 ⊆ ℝ |
14 |
|
1nn |
⊢ 1 ∈ ℕ |
15 |
1
|
stirlinglem2 |
⊢ ( 1 ∈ ℕ → ( 𝐴 ‘ 1 ) ∈ ℝ+ ) |
16 |
|
relogcl |
⊢ ( ( 𝐴 ‘ 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) |
17 |
14 15 16
|
mp2b |
⊢ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ |
18 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
19 |
|
nfcv |
⊢ Ⅎ 𝑛 log |
20 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
21 |
1 20
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
22 |
21 18
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) |
23 |
19 22
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) |
24 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
25 |
18 23 24 2
|
fvmptf |
⊢ ( ( 1 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 1 ) ) ∈ ℝ ) → ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
26 |
14 17 25
|
mp2an |
⊢ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) |
27 |
|
2fveq3 |
⊢ ( 𝑗 = 1 → ( log ‘ ( 𝐴 ‘ 𝑗 ) ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) |
28 |
27
|
rspceeqv |
⊢ ( ( 1 ∈ ℕ ∧ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 1 ) ) ) → ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
29 |
14 26 28
|
mp2an |
⊢ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
30 |
26 17
|
eqeltri |
⊢ ( 𝐵 ‘ 1 ) ∈ ℝ |
31 |
|
nfcv |
⊢ Ⅎ 𝑗 ( log ‘ ( 𝐴 ‘ 𝑛 ) ) |
32 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑗 |
33 |
21 32
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) |
34 |
19 33
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) |
35 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑗 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
36 |
31 34 35
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
37 |
2 36
|
eqtri |
⊢ 𝐵 = ( 𝑗 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
38 |
37
|
elrnmpt |
⊢ ( ( 𝐵 ‘ 1 ) ∈ ℝ → ( ( 𝐵 ‘ 1 ) ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) ) |
39 |
30 38
|
ax-mp |
⊢ ( ( 𝐵 ‘ 1 ) ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 1 ) = ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) |
40 |
29 39
|
mpbir |
⊢ ( 𝐵 ‘ 1 ) ∈ ran 𝐵 |
41 |
40
|
ne0ii |
⊢ ran 𝐵 ≠ ∅ |
42 |
|
4re |
⊢ 4 ∈ ℝ |
43 |
|
4ne0 |
⊢ 4 ≠ 0 |
44 |
42 43
|
rereccli |
⊢ ( 1 / 4 ) ∈ ℝ |
45 |
30 44
|
resubcli |
⊢ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ∈ ℝ |
46 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
47 |
1 2 46
|
stirlinglem12 |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
48 |
47
|
rgen |
⊢ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) |
49 |
|
breq1 |
⊢ ( 𝑥 = ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) → ( 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ↔ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
50 |
49
|
ralbidv |
⊢ ( 𝑥 = ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) → ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ↔ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
51 |
50
|
rspcev |
⊢ ( ( ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ∈ ℝ ∧ ∀ 𝑗 ∈ ℕ ( ( 𝐵 ‘ 1 ) − ( 1 / 4 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
52 |
45 48 51
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) |
53 |
|
simpr |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → 𝑦 ∈ ran 𝐵 ) |
54 |
8
|
rgen |
⊢ ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ |
55 |
2
|
fnmpt |
⊢ ( ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ → 𝐵 Fn ℕ ) |
56 |
|
fvelrnb |
⊢ ( 𝐵 Fn ℕ → ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) ) |
57 |
54 55 56
|
mp2b |
⊢ ( 𝑦 ∈ ran 𝐵 ↔ ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
58 |
53 57
|
sylib |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
59 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) |
60 |
|
nfv |
⊢ Ⅎ 𝑗 𝑦 ∈ ran 𝐵 |
61 |
59 60
|
nfan |
⊢ Ⅎ 𝑗 ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) |
62 |
|
nfv |
⊢ Ⅎ 𝑗 𝑥 ≤ 𝑦 |
63 |
|
simp1l |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
64 |
|
simp2 |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑗 ∈ ℕ ) |
65 |
|
rsp |
⊢ ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ( 𝑗 ∈ ℕ → 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) ) |
66 |
63 64 65
|
sylc |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
67 |
|
simp3 |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → ( 𝐵 ‘ 𝑗 ) = 𝑦 ) |
68 |
66 67
|
breqtrd |
⊢ ( ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) ∧ 𝑗 ∈ ℕ ∧ ( 𝐵 ‘ 𝑗 ) = 𝑦 ) → 𝑥 ≤ 𝑦 ) |
69 |
68
|
3exp |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ( 𝑗 ∈ ℕ → ( ( 𝐵 ‘ 𝑗 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) ) |
70 |
61 62 69
|
rexlimd |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → ( ∃ 𝑗 ∈ ℕ ( 𝐵 ‘ 𝑗 ) = 𝑦 → 𝑥 ≤ 𝑦 ) ) |
71 |
58 70
|
mpd |
⊢ ( ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ∧ 𝑦 ∈ ran 𝐵 ) → 𝑥 ≤ 𝑦 ) |
72 |
71
|
ralrimiva |
⊢ ( ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) |
73 |
72
|
reximi |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) |
74 |
52 73
|
ax-mp |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 |
75 |
|
infrecl |
⊢ ( ( ran 𝐵 ⊆ ℝ ∧ ran 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝐵 𝑥 ≤ 𝑦 ) → inf ( ran 𝐵 , ℝ , < ) ∈ ℝ ) |
76 |
13 41 74 75
|
mp3an |
⊢ inf ( ran 𝐵 , ℝ , < ) ∈ ℝ |
77 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
78 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
79 |
2 8
|
fmpti |
⊢ 𝐵 : ℕ ⟶ ℝ |
80 |
79
|
a1i |
⊢ ( ⊤ → 𝐵 : ℕ ⟶ ℝ ) |
81 |
|
peano2nn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) |
82 |
1
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
83 |
|
simpr |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → 𝑛 = ( 𝑗 + 1 ) ) |
84 |
83
|
fveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ! ‘ 𝑛 ) = ( ! ‘ ( 𝑗 + 1 ) ) ) |
85 |
83
|
oveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( 2 · 𝑛 ) = ( 2 · ( 𝑗 + 1 ) ) ) |
86 |
85
|
fveq2d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ) |
87 |
83
|
oveq1d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( 𝑛 / e ) = ( ( 𝑗 + 1 ) / e ) ) |
88 |
87 83
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) |
89 |
86 88
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) |
90 |
84 89
|
oveq12d |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 = ( 𝑗 + 1 ) ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ) |
91 |
81
|
nnnn0d |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ0 ) |
92 |
|
faccl |
⊢ ( ( 𝑗 + 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ ) |
93 |
|
nncn |
⊢ ( ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
94 |
91 92 93
|
3syl |
⊢ ( 𝑗 ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℂ ) |
95 |
|
2cnd |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) |
96 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
97 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) |
98 |
96 97
|
addcld |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℂ ) |
99 |
95 98
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 𝑗 + 1 ) ) ∈ ℂ ) |
100 |
99
|
sqrtcld |
⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
101 |
|
ere |
⊢ e ∈ ℝ |
102 |
101
|
recni |
⊢ e ∈ ℂ |
103 |
102
|
a1i |
⊢ ( 𝑗 ∈ ℕ → e ∈ ℂ ) |
104 |
|
0re |
⊢ 0 ∈ ℝ |
105 |
|
epos |
⊢ 0 < e |
106 |
104 105
|
gtneii |
⊢ e ≠ 0 |
107 |
106
|
a1i |
⊢ ( 𝑗 ∈ ℕ → e ≠ 0 ) |
108 |
98 103 107
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ∈ ℂ ) |
109 |
108 91
|
expcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
110 |
100 109
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ∈ ℂ ) |
111 |
|
2rp |
⊢ 2 ∈ ℝ+ |
112 |
111
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℝ+ ) |
113 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
114 |
104
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 0 ∈ ℝ ) |
115 |
|
1red |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℝ ) |
116 |
|
0le1 |
⊢ 0 ≤ 1 |
117 |
116
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 0 ≤ 1 ) |
118 |
|
nnge1 |
⊢ ( 𝑗 ∈ ℕ → 1 ≤ 𝑗 ) |
119 |
114 115 113 117 118
|
letrd |
⊢ ( 𝑗 ∈ ℕ → 0 ≤ 𝑗 ) |
120 |
113 119
|
ge0p1rpd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℝ+ ) |
121 |
112 120
|
rpmulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
122 |
121
|
sqrtgt0d |
⊢ ( 𝑗 ∈ ℕ → 0 < ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ) |
123 |
122
|
gt0ne0d |
⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ≠ 0 ) |
124 |
81
|
nnne0d |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ≠ 0 ) |
125 |
98 103 124 107
|
divne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ≠ 0 ) |
126 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
127 |
126
|
peano2zd |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℤ ) |
128 |
108 125 127
|
expne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ≠ 0 ) |
129 |
100 109 123 128
|
mulne0d |
⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ≠ 0 ) |
130 |
94 110 129
|
divcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℂ ) |
131 |
82 90 81 130
|
fvmptd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) = ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ) |
132 |
|
nnrp |
⊢ ( ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
133 |
91 92 132
|
3syl |
⊢ ( 𝑗 ∈ ℕ → ( ! ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
134 |
121
|
rpsqrtcld |
⊢ ( 𝑗 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) ∈ ℝ+ ) |
135 |
|
epr |
⊢ e ∈ ℝ+ |
136 |
135
|
a1i |
⊢ ( 𝑗 ∈ ℕ → e ∈ ℝ+ ) |
137 |
120 136
|
rpdivcld |
⊢ ( 𝑗 ∈ ℕ → ( ( 𝑗 + 1 ) / e ) ∈ ℝ+ ) |
138 |
137 127
|
rpexpcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
139 |
134 138
|
rpmulcld |
⊢ ( 𝑗 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ∈ ℝ+ ) |
140 |
133 139
|
rpdivcld |
⊢ ( 𝑗 ∈ ℕ → ( ( ! ‘ ( 𝑗 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑗 + 1 ) ) ) · ( ( ( 𝑗 + 1 ) / e ) ↑ ( 𝑗 + 1 ) ) ) ) ∈ ℝ+ ) |
141 |
131 140
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐴 ‘ ( 𝑗 + 1 ) ) ∈ ℝ+ ) |
142 |
141
|
relogcld |
⊢ ( 𝑗 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) |
143 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) |
144 |
21 143
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗 + 1 ) ) |
145 |
19 144
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) |
146 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
147 |
143 145 146 2
|
fvmptf |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
148 |
81 142 147
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑗 + 1 ) ) ) ) |
149 |
148 142
|
eqeltrd |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ∈ ℝ ) |
150 |
79
|
ffvelrni |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
151 |
|
eqid |
⊢ ( 𝑧 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑧 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑧 ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑧 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ↑ ( 2 · 𝑧 ) ) ) ) |
152 |
1 2 151
|
stirlinglem11 |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) < ( 𝐵 ‘ 𝑗 ) ) |
153 |
149 150 152
|
ltled |
⊢ ( 𝑗 ∈ ℕ → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
154 |
153
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐵 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐵 ‘ 𝑗 ) ) |
155 |
52
|
a1i |
⊢ ( ⊤ → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ 𝑥 ≤ ( 𝐵 ‘ 𝑗 ) ) |
156 |
77 78 80 154 155
|
climinf |
⊢ ( ⊤ → 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) |
157 |
156
|
mptru |
⊢ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) |
158 |
|
breq2 |
⊢ ( 𝑑 = inf ( ran 𝐵 , ℝ , < ) → ( 𝐵 ⇝ 𝑑 ↔ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) ) |
159 |
158
|
rspcev |
⊢ ( ( inf ( ran 𝐵 , ℝ , < ) ∈ ℝ ∧ 𝐵 ⇝ inf ( ran 𝐵 , ℝ , < ) ) → ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 ) |
160 |
76 157 159
|
mp2an |
⊢ ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 |