| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem14.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 2 |
|
stirlinglem14.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 3 |
1 2
|
stirlinglem13 |
⊢ ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 |
| 4 |
|
simpl |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝑑 ∈ ℝ ) |
| 5 |
4
|
rpefcld |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → ( exp ‘ 𝑑 ) ∈ ℝ+ ) |
| 6 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 7 |
|
1zzd |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 1 ∈ ℤ ) |
| 8 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| 9 |
8
|
a1i |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → exp ∈ ( ℂ –cn→ ℂ ) ) |
| 10 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 11 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 12 |
|
nncn |
⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 13 |
10 11 12
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 14 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
| 15 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 16 |
14 15
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 17 |
16
|
sqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 18 |
|
epr |
⊢ e ∈ ℝ+ |
| 19 |
|
rpcn |
⊢ ( e ∈ ℝ+ → e ∈ ℂ ) |
| 20 |
18 19
|
ax-mp |
⊢ e ∈ ℂ |
| 21 |
20
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
| 22 |
|
0re |
⊢ 0 ∈ ℝ |
| 23 |
|
epos |
⊢ 0 < e |
| 24 |
22 23
|
gtneii |
⊢ e ≠ 0 |
| 25 |
24
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 26 |
15 21 25
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
| 27 |
26 10
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 28 |
17 27
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 29 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 30 |
29
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 31 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 32 |
30 31
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 33 |
32
|
sqrtgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 34 |
33
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 35 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 36 |
15 21 35 25
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
| 37 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 38 |
26 36 37
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 39 |
17 27 34 38
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 40 |
13 28 39
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 41 |
1
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 42 |
40 41
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 43 |
42 40
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 44 |
|
nnne0 |
⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ≠ 0 ) |
| 45 |
10 11 44
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ≠ 0 ) |
| 46 |
13 28 45 39
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ≠ 0 ) |
| 47 |
42 46
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ≠ 0 ) |
| 48 |
43 47
|
logcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℂ ) |
| 49 |
2 48
|
fmpti |
⊢ 𝐵 : ℕ ⟶ ℂ |
| 50 |
49
|
a1i |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝐵 : ℕ ⟶ ℂ ) |
| 51 |
|
simpr |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝐵 ⇝ 𝑑 ) |
| 52 |
4
|
recnd |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝑑 ∈ ℂ ) |
| 53 |
6 7 9 50 51 52
|
climcncf |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → ( exp ∘ 𝐵 ) ⇝ ( exp ‘ 𝑑 ) ) |
| 54 |
8
|
elexi |
⊢ exp ∈ V |
| 55 |
|
nnex |
⊢ ℕ ∈ V |
| 56 |
55
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) ∈ V |
| 57 |
2 56
|
eqeltri |
⊢ 𝐵 ∈ V |
| 58 |
54 57
|
coex |
⊢ ( exp ∘ 𝐵 ) ∈ V |
| 59 |
58
|
a1i |
⊢ ( ⊤ → ( exp ∘ 𝐵 ) ∈ V ) |
| 60 |
55
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ∈ V |
| 61 |
1 60
|
eqeltri |
⊢ 𝐴 ∈ V |
| 62 |
61
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ V ) |
| 63 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 64 |
2
|
funmpt2 |
⊢ Fun 𝐵 |
| 65 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
| 66 |
|
rabid2 |
⊢ ( ℕ = { 𝑛 ∈ ℕ ∣ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V } ↔ ∀ 𝑛 ∈ ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V ) |
| 67 |
1
|
stirlinglem2 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
| 68 |
|
relogcl |
⊢ ( ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ ) |
| 69 |
|
elex |
⊢ ( ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ℝ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V ) |
| 70 |
67 68 69
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V ) |
| 71 |
66 70
|
mprgbir |
⊢ ℕ = { 𝑛 ∈ ℕ ∣ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V } |
| 72 |
2
|
dmmpt |
⊢ dom 𝐵 = { 𝑛 ∈ ℕ ∣ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ V } |
| 73 |
71 72
|
eqtr4i |
⊢ ℕ = dom 𝐵 |
| 74 |
65 73
|
eleqtrdi |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ dom 𝐵 ) |
| 75 |
|
fvco |
⊢ ( ( Fun 𝐵 ∧ 𝑘 ∈ dom 𝐵 ) → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( exp ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 76 |
64 74 75
|
sylancr |
⊢ ( 𝑘 ∈ ℕ → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( exp ‘ ( 𝐵 ‘ 𝑘 ) ) ) |
| 77 |
1
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 78 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) |
| 79 |
78
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 80 |
78
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 81 |
80
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 82 |
78
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 𝑛 / e ) = ( 𝑘 / e ) ) |
| 83 |
82 78
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑘 / e ) ↑ 𝑘 ) ) |
| 84 |
81 83
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 85 |
79 84
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 86 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 87 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 88 |
|
nncn |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 89 |
86 87 88
|
3syl |
⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 90 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
| 91 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 92 |
90 91
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 93 |
92
|
sqrtcld |
⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ∈ ℂ ) |
| 94 |
20
|
a1i |
⊢ ( 𝑘 ∈ ℕ → e ∈ ℂ ) |
| 95 |
24
|
a1i |
⊢ ( 𝑘 ∈ ℕ → e ≠ 0 ) |
| 96 |
91 94 95
|
divcld |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ∈ ℂ ) |
| 97 |
96 86
|
expcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ∈ ℂ ) |
| 98 |
93 97
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 99 |
29
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ+ ) |
| 100 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 101 |
99 100
|
rpmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ+ ) |
| 102 |
101
|
sqrtgt0d |
⊢ ( 𝑘 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 103 |
102
|
gt0ne0d |
⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ≠ 0 ) |
| 104 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 105 |
91 94 104 95
|
divne0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ≠ 0 ) |
| 106 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 107 |
96 105 106
|
expne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ≠ 0 ) |
| 108 |
93 97 103 107
|
mulne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ≠ 0 ) |
| 109 |
89 98 108
|
divcld |
⊢ ( 𝑘 ∈ ℕ → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 110 |
77 85 65 109
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 111 |
110 109
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 112 |
|
nnne0 |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 113 |
86 87 112
|
3syl |
⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 114 |
89 98 113 108
|
divne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ≠ 0 ) |
| 115 |
110 114
|
eqnetrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ≠ 0 ) |
| 116 |
111 115
|
logcld |
⊢ ( 𝑘 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 117 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 118 |
|
nfcv |
⊢ Ⅎ 𝑛 log |
| 119 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 120 |
1 119
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
| 121 |
120 117
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 122 |
118 121
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑘 ) ) |
| 123 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 124 |
117 122 123 2
|
fvmptf |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 125 |
116 124
|
mpdan |
⊢ ( 𝑘 ∈ ℕ → ( 𝐵 ‘ 𝑘 ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 126 |
125
|
fveq2d |
⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( 𝐵 ‘ 𝑘 ) ) = ( exp ‘ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 127 |
|
eflog |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝐴 ‘ 𝑘 ) ) |
| 128 |
111 115 127
|
syl2anc |
⊢ ( 𝑘 ∈ ℕ → ( exp ‘ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝐴 ‘ 𝑘 ) ) |
| 129 |
76 126 128
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 130 |
129
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( exp ∘ 𝐵 ) ‘ 𝑘 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 131 |
6 59 62 63 130
|
climeq |
⊢ ( ⊤ → ( ( exp ∘ 𝐵 ) ⇝ ( exp ‘ 𝑑 ) ↔ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) ) |
| 132 |
131
|
mptru |
⊢ ( ( exp ∘ 𝐵 ) ⇝ ( exp ‘ 𝑑 ) ↔ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) |
| 133 |
53 132
|
sylib |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → 𝐴 ⇝ ( exp ‘ 𝑑 ) ) |
| 134 |
|
breq2 |
⊢ ( 𝑐 = ( exp ‘ 𝑑 ) → ( 𝐴 ⇝ 𝑐 ↔ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) ) |
| 135 |
134
|
rspcev |
⊢ ( ( ( exp ‘ 𝑑 ) ∈ ℝ+ ∧ 𝐴 ⇝ ( exp ‘ 𝑑 ) ) → ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 ) |
| 136 |
5 133 135
|
syl2anc |
⊢ ( ( 𝑑 ∈ ℝ ∧ 𝐵 ⇝ 𝑑 ) → ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 ) |
| 137 |
136
|
rexlimiva |
⊢ ( ∃ 𝑑 ∈ ℝ 𝐵 ⇝ 𝑑 → ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 ) |
| 138 |
3 137
|
ax-mp |
⊢ ∃ 𝑐 ∈ ℝ+ 𝐴 ⇝ 𝑐 |