| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem15.1 |
⊢ Ⅎ 𝑛 𝜑 |
| 2 |
|
stirlinglem15.2 |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 3 |
|
stirlinglem15.3 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 4 |
|
stirlinglem15.4 |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 5 |
|
stirlinglem15.5 |
⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 6 |
|
stirlinglem15.6 |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 7 |
|
stirlinglem15.7 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 8 |
|
stirlinglem15.8 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 9 |
|
stirlinglem15.9 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 10 |
|
stirlinglem15.10 |
⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) |
| 11 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 13 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℂ ) |
| 14 |
|
picn |
⊢ π ∈ ℂ |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℂ ) |
| 16 |
13 15
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · π ) ∈ ℂ ) |
| 17 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
| 19 |
16 18
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 2 · π ) · 𝑛 ) ∈ ℂ ) |
| 20 |
19
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) ∈ ℂ ) |
| 21 |
|
ere |
⊢ e ∈ ℝ |
| 22 |
21
|
recni |
⊢ e ∈ ℂ |
| 23 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
| 24 |
|
epos |
⊢ 0 < e |
| 25 |
21 24
|
gt0ne0ii |
⊢ e ≠ 0 |
| 26 |
25
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 27 |
17 23 26
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
| 28 |
27 11
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 30 |
20 29
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 31 |
2
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 32 |
12 30 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 34 |
15
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ π ) ∈ ℂ ) |
| 35 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
| 36 |
35 17
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 37 |
36
|
sqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 39 |
34 38 29
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ π ) · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 40 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 41 |
7 40
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐹 |
| 42 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 43 |
8 42
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐻 |
| 44 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 45 |
6 44
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑉 |
| 46 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 47 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 48 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 49 |
3 48
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
| 50 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 51 |
4 50
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐷 |
| 52 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 53 |
11 52
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 54 |
53
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℝ+ ) |
| 55 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 56 |
55
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 57 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 58 |
56 57
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 59 |
58
|
rpsqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 60 |
|
epr |
⊢ e ∈ ℝ+ |
| 61 |
60
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℝ+ ) |
| 62 |
57 61
|
rpdivcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℝ+ ) |
| 63 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 64 |
62 63
|
rpexpcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℝ+ ) |
| 65 |
59 64
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 66 |
54 65
|
rpdivcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℝ+ ) |
| 67 |
3 66
|
fmpti |
⊢ 𝐴 : ℕ ⟶ ℝ+ |
| 68 |
67
|
a1i |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℝ+ ) |
| 69 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 70 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 71 |
67
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 𝐴 : ℕ ⟶ ℝ+ ) |
| 72 |
|
2nn |
⊢ 2 ∈ ℕ |
| 73 |
72
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 74 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 75 |
73 74
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 76 |
71 75
|
ffvelcdmd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 77 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 78 |
76 77
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 79 |
78 76
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) |
| 80 |
79
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) |
| 81 |
1 49 51 4 68 7 69 70 80 9 10
|
stirlinglem8 |
⊢ ( 𝜑 → 𝐹 ⇝ ( 𝐶 ↑ 2 ) ) |
| 82 |
|
nnex |
⊢ ℕ ∈ V |
| 83 |
82
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ V |
| 84 |
6 83
|
eqeltri |
⊢ 𝑉 ∈ V |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 86 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 − ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 87 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 88 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) |
| 89 |
8 86 87 88
|
stirlinglem1 |
⊢ 𝐻 ⇝ ( 1 / 2 ) |
| 90 |
89
|
a1i |
⊢ ( 𝜑 → 𝐻 ⇝ ( 1 / 2 ) ) |
| 91 |
53
|
nncnd |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 92 |
37 28
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 93 |
58
|
sqrtgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 94 |
93
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 95 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 96 |
17 23 95 26
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
| 97 |
27 96 63
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 98 |
37 28 94 97
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 99 |
91 92 98
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 100 |
3
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 101 |
99 100
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 102 |
101 99
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 103 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 104 |
103
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℕ0 ) |
| 105 |
102 104
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 106 |
79
|
rpcnd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 107 |
106
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
| 108 |
79
|
rpne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ≠ 0 ) |
| 109 |
|
2z |
⊢ 2 ∈ ℤ |
| 110 |
109
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
| 111 |
106 108 110
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ≠ 0 ) |
| 112 |
105 107 111
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) |
| 113 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 114 |
112 113
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 115 |
114 112
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 117 |
17
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 118 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
| 119 |
36 118
|
addcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 120 |
17 119
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
| 121 |
75
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 122 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
| 123 |
75
|
nngt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( 2 · 𝑛 ) ) |
| 124 |
|
0lt1 |
⊢ 0 < 1 |
| 125 |
124
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
| 126 |
121 122 123 125
|
addgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 127 |
126
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 128 |
17 119 95 127
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ≠ 0 ) |
| 129 |
117 120 128
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
| 130 |
8
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) → ( 𝐻 ‘ 𝑛 ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 131 |
129 130
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐻 ‘ 𝑛 ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 132 |
131 129
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐻 ‘ 𝑛 ) ∈ ℂ ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐻 ‘ 𝑛 ) ∈ ℂ ) |
| 134 |
112 129
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ ℂ ) |
| 135 |
3 4 5 6
|
stirlinglem3 |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 136 |
135
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ ℂ ) → ( 𝑉 ‘ 𝑛 ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 137 |
134 136
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝑉 ‘ 𝑛 ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 138 |
114 131
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐹 ‘ 𝑛 ) · ( 𝐻 ‘ 𝑛 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 139 |
137 138
|
eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑉 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
| 140 |
139
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑉 ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑛 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
| 141 |
1 41 43 45 46 47 81 85 90 116 133 140
|
climmulf |
⊢ ( 𝜑 → 𝑉 ⇝ ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) ) |
| 142 |
6
|
wallispi2 |
⊢ 𝑉 ⇝ ( π / 2 ) |
| 143 |
|
climuni |
⊢ ( ( 𝑉 ⇝ ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) ∧ 𝑉 ⇝ ( π / 2 ) ) → ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) = ( π / 2 ) ) |
| 144 |
141 142 143
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) = ( π / 2 ) ) |
| 145 |
144
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( ( π / 2 ) / ( 1 / 2 ) ) ) |
| 146 |
9
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 147 |
146
|
sqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 148 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 149 |
148
|
halfcld |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 150 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 151 |
|
2pos |
⊢ 0 < 2 |
| 152 |
151
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 153 |
152
|
gt0ne0d |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 154 |
150 153
|
recne0d |
⊢ ( 𝜑 → ( 1 / 2 ) ≠ 0 ) |
| 155 |
147 149 154
|
divcan4d |
⊢ ( 𝜑 → ( ( ( 𝐶 ↑ 2 ) · ( 1 / 2 ) ) / ( 1 / 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 156 |
14
|
a1i |
⊢ ( 𝜑 → π ∈ ℂ ) |
| 157 |
124
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 158 |
157
|
gt0ne0d |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 159 |
156 148 150 158 153
|
divcan7d |
⊢ ( 𝜑 → ( ( π / 2 ) / ( 1 / 2 ) ) = ( π / 1 ) ) |
| 160 |
156
|
div1d |
⊢ ( 𝜑 → ( π / 1 ) = π ) |
| 161 |
159 160
|
eqtrd |
⊢ ( 𝜑 → ( ( π / 2 ) / ( 1 / 2 ) ) = π ) |
| 162 |
145 155 161
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = π ) |
| 163 |
162
|
fveq2d |
⊢ ( 𝜑 → ( √ ‘ ( 𝐶 ↑ 2 ) ) = ( √ ‘ π ) ) |
| 164 |
9
|
rprege0d |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 165 |
|
sqrtsq |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( √ ‘ ( 𝐶 ↑ 2 ) ) = 𝐶 ) |
| 166 |
164 165
|
syl |
⊢ ( 𝜑 → ( √ ‘ ( 𝐶 ↑ 2 ) ) = 𝐶 ) |
| 167 |
163 166
|
eqtr3d |
⊢ ( 𝜑 → ( √ ‘ π ) = 𝐶 ) |
| 168 |
167
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ π ) = 𝐶 ) |
| 169 |
168
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ π ) · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝐶 · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 170 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 171 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 172 |
170 171
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 · ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) |
| 173 |
39 169 172
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) |
| 174 |
173
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) ) |
| 175 |
|
2re |
⊢ 2 ∈ ℝ |
| 176 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℝ ) |
| 177 |
|
pire |
⊢ π ∈ ℝ |
| 178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → π ∈ ℝ ) |
| 179 |
176 178
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · π ) ∈ ℝ ) |
| 180 |
|
0le2 |
⊢ 0 ≤ 2 |
| 181 |
180
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 2 ) |
| 182 |
|
0re |
⊢ 0 ∈ ℝ |
| 183 |
|
pipos |
⊢ 0 < π |
| 184 |
182 177 183
|
ltleii |
⊢ 0 ≤ π |
| 185 |
184
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ π ) |
| 186 |
176 178 181 185
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 2 · π ) ) |
| 187 |
12
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ ) |
| 188 |
12
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ 𝑛 ) |
| 189 |
179 186 187 188
|
sqrtmuld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) = ( ( √ ‘ ( 2 · π ) ) · ( √ ‘ 𝑛 ) ) ) |
| 190 |
176 181 178 185
|
sqrtmuld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · π ) ) = ( ( √ ‘ 2 ) · ( √ ‘ π ) ) ) |
| 191 |
190
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · π ) ) · ( √ ‘ 𝑛 ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ π ) ) · ( √ ‘ 𝑛 ) ) ) |
| 192 |
13
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 2 ) ∈ ℂ ) |
| 193 |
18
|
sqrtcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ 𝑛 ) ∈ ℂ ) |
| 194 |
192 34 193
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( √ ‘ 2 ) · ( √ ‘ π ) ) · ( √ ‘ 𝑛 ) ) = ( ( √ ‘ 2 ) · ( ( √ ‘ π ) · ( √ ‘ 𝑛 ) ) ) ) |
| 195 |
192 34 193
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ 2 ) · ( ( √ ‘ π ) · ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ π ) · ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) ) ) |
| 196 |
176 181 187 188
|
sqrtmuld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) ) |
| 197 |
196
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) = ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 198 |
197
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ π ) · ( ( √ ‘ 2 ) · ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 199 |
195 198
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ 2 ) · ( ( √ ‘ π ) · ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 200 |
191 194 199
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · π ) ) · ( √ ‘ 𝑛 ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 201 |
189 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) = ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) ) |
| 202 |
201
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 203 |
202
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ π ) · ( √ ‘ ( 2 · 𝑛 ) ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 204 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 205 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 206 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → e ∈ ℂ ) |
| 207 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → e ≠ 0 ) |
| 208 |
18 206 207
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 / e ) ∈ ℂ ) |
| 209 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
| 210 |
18 206 209 207
|
divne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 / e ) ≠ 0 ) |
| 211 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 212 |
208 210 211
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 213 |
38 29 205 212
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 214 |
9
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐶 ≠ 0 ) |
| 216 |
204 171 170 213 215
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) / 𝐶 ) = ( ( ! ‘ 𝑛 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) · 𝐶 ) ) ) |
| 217 |
174 203 216
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) / 𝐶 ) ) |
| 218 |
99
|
ancli |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) ) |
| 219 |
218
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) ) |
| 220 |
219 100
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 221 |
220
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝐴 ‘ 𝑛 ) ) |
| 222 |
221
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) / 𝐶 ) = ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) |
| 223 |
33 217 222
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) = ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) |
| 224 |
1 223
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) ) |
| 225 |
102
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 226 |
225 170 215
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) |
| 227 |
1 226
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ) |
| 228 |
146 214
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 229 |
82
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ∈ V |
| 230 |
229
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ∈ V ) |
| 231 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 232 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → 𝑛 = 𝑘 ) |
| 233 |
232
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 234 |
232
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 235 |
234
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 236 |
232
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( 𝑛 / e ) = ( 𝑘 / e ) ) |
| 237 |
236 232
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑘 / e ) ↑ 𝑘 ) ) |
| 238 |
235 237
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 239 |
233 238
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 = 𝑘 ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 240 |
|
id |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ ) |
| 241 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 242 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 243 |
|
nncn |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 244 |
241 242 243
|
3syl |
⊢ ( 𝑘 ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 245 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
| 246 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 247 |
245 246
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℂ ) |
| 248 |
247
|
sqrtcld |
⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ∈ ℂ ) |
| 249 |
22
|
a1i |
⊢ ( 𝑘 ∈ ℕ → e ∈ ℂ ) |
| 250 |
25
|
a1i |
⊢ ( 𝑘 ∈ ℕ → e ≠ 0 ) |
| 251 |
246 249 250
|
divcld |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ∈ ℂ ) |
| 252 |
251 241
|
expcld |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ∈ ℂ ) |
| 253 |
248 252
|
mulcld |
⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ∈ ℂ ) |
| 254 |
55
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℝ+ ) |
| 255 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 256 |
254 255
|
rpmulcld |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℝ+ ) |
| 257 |
256
|
sqrtgt0d |
⊢ ( 𝑘 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 258 |
257
|
gt0ne0d |
⊢ ( 𝑘 ∈ ℕ → ( √ ‘ ( 2 · 𝑘 ) ) ≠ 0 ) |
| 259 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 260 |
246 249 259 250
|
divne0d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 / e ) ≠ 0 ) |
| 261 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 262 |
251 260 261
|
expne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑘 / e ) ↑ 𝑘 ) ≠ 0 ) |
| 263 |
248 252 258 262
|
mulne0d |
⊢ ( 𝑘 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ≠ 0 ) |
| 264 |
244 253 263
|
divcld |
⊢ ( 𝑘 ∈ ℕ → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 265 |
231 239 240 264
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 266 |
265 264
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 267 |
266
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 268 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) |
| 269 |
|
nfcv |
⊢ Ⅎ 𝑛 1 |
| 270 |
|
nfcv |
⊢ Ⅎ 𝑛 / |
| 271 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐶 |
| 272 |
269 270 271
|
nfov |
⊢ Ⅎ 𝑛 ( 1 / 𝐶 ) |
| 273 |
|
nfcv |
⊢ Ⅎ 𝑛 · |
| 274 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 275 |
49 274
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 276 |
272 273 275
|
nfov |
⊢ Ⅎ 𝑛 ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) |
| 277 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 278 |
277
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 279 |
268 276 278
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 280 |
279
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 281 |
280
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑘 ) ) |
| 282 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 283 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 284 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ≠ 0 ) |
| 285 |
283 284
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 / 𝐶 ) ∈ ℂ ) |
| 286 |
285 267
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 287 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 288 |
287
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 289 |
282 286 288
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 290 |
281 289
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑘 ) ) ) |
| 291 |
46 47 10 228 230 267 290
|
climmulc2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ⇝ ( ( 1 / 𝐶 ) · 𝐶 ) ) |
| 292 |
146 214
|
recid2d |
⊢ ( 𝜑 → ( ( 1 / 𝐶 ) · 𝐶 ) = 1 ) |
| 293 |
291 292
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝐶 ) · ( 𝐴 ‘ 𝑛 ) ) ) ⇝ 1 ) |
| 294 |
227 293
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) / 𝐶 ) ) ⇝ 1 ) |
| 295 |
224 294
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) |