Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem3.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
2 |
|
stirlinglem3.2 |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
3 |
|
stirlinglem3.3 |
⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
4 |
|
stirlinglem3.4 |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
5 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
6 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
7 |
|
nncn |
⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
9 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
10 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
11 |
9 10
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
12 |
11
|
sqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
13 |
|
ere |
⊢ e ∈ ℝ |
14 |
13
|
recni |
⊢ e ∈ ℂ |
15 |
14
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
16 |
|
epos |
⊢ 0 < e |
17 |
13 16
|
gt0ne0ii |
⊢ e ≠ 0 |
18 |
17
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
19 |
10 15 18
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
20 |
19 5
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
21 |
12 20
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
22 |
|
2rp |
⊢ 2 ∈ ℝ+ |
23 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
24 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
25 |
23 24
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
26 |
25
|
sqrtgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
27 |
26
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
28 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
29 |
10 15 28 18
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
30 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
31 |
19 29 30
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
32 |
12 20 27 31
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
33 |
8 21 32
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
34 |
1
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
35 |
33 34
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
36 |
35
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) = ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) ) |
37 |
3
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) → ( 𝐸 ‘ 𝑛 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
38 |
21 37
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ 𝑛 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
39 |
38
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) |
40 |
36 39
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) = ( ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
41 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
42 |
41
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℕ0 ) |
43 |
8 21 32 42
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) = ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
44 |
43
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) = ( ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
45 |
8 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
46 |
21 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ∈ ℂ ) |
47 |
42
|
nn0zd |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℤ ) |
48 |
21 32 47
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ≠ 0 ) |
49 |
45 46 48
|
divcan1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) = ( ( ! ‘ 𝑛 ) ↑ 4 ) ) |
50 |
40 44 49
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) = ( ( ! ‘ 𝑛 ) ↑ 4 ) ) |
51 |
50
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) ↑ 4 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) |
52 |
51
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) ) |
53 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
54 |
53
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ0 ) |
55 |
54 5
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ0 ) |
56 |
|
faccl |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ ) |
57 |
|
nncn |
⊢ ( ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
58 |
55 56 57
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
59 |
58
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
60 |
9 11
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) ∈ ℂ ) |
61 |
60
|
sqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
62 |
11 15 18
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) / e ) ∈ ℂ ) |
63 |
62 55
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
64 |
61 63
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
65 |
64
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ∈ ℂ ) |
66 |
23 25
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
67 |
66
|
sqrtgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ) |
68 |
67
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ≠ 0 ) |
69 |
23
|
rpne0d |
⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
70 |
9 10 69 28
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ≠ 0 ) |
71 |
11 15 70 18
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) / e ) ≠ 0 ) |
72 |
|
2z |
⊢ 2 ∈ ℤ |
73 |
72
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
74 |
73 30
|
zmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℤ ) |
75 |
62 71 74
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ≠ 0 ) |
76 |
61 63 68 75
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ≠ 0 ) |
77 |
64 76 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ≠ 0 ) |
78 |
59 65 77
|
divcan1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
79 |
58 64 76 54
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
80 |
79
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) ) |
81 |
80
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
82 |
78 81
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
83 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) |
84 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) |
85 |
84
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑚 ) ) ) |
86 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 / e ) = ( 𝑚 / e ) ) |
87 |
|
id |
⊢ ( 𝑛 = 𝑚 → 𝑛 = 𝑚 ) |
88 |
86 87
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑚 / e ) ↑ 𝑚 ) ) |
89 |
85 88
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) |
90 |
83 89
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
91 |
90
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
92 |
1 91
|
eqtri |
⊢ 𝐴 = ( 𝑚 ∈ ℕ ↦ ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
93 |
|
fveq2 |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 2 · 𝑛 ) ) ) |
94 |
|
oveq2 |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( 2 · 𝑚 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
95 |
94
|
fveq2d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( √ ‘ ( 2 · 𝑚 ) ) = ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ) |
96 |
|
oveq1 |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( 𝑚 / e ) = ( ( 2 · 𝑛 ) / e ) ) |
97 |
|
id |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → 𝑚 = ( 2 · 𝑛 ) ) |
98 |
96 97
|
oveq12d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( 𝑚 / e ) ↑ 𝑚 ) = ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) |
99 |
95 98
|
oveq12d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
100 |
93 99
|
oveq12d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
101 |
|
2nn |
⊢ 2 ∈ ℕ |
102 |
101
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
103 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
104 |
102 103
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
105 |
58 64 76
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ∈ ℂ ) |
106 |
92 100 104 105
|
fvmptd3 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
107 |
106
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) ) |
108 |
107
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
109 |
108
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
110 |
|
eqidd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
111 |
99
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 = ( 2 · 𝑛 ) ) → ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
112 |
110 111 104 64
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
113 |
112
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) |
114 |
113
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
116 |
82 109 115
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
117 |
89
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) |
118 |
117
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
119 |
118
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
120 |
119
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
121 |
120
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
122 |
121
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
123 |
106 105
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
124 |
2
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
125 |
123 124
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
126 |
125
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( 𝐷 ‘ 𝑛 ) ) |
127 |
126
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
128 |
3
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
129 |
128
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
130 |
129
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( 𝐸 ‘ ( 2 · 𝑛 ) ) ) |
131 |
130
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
132 |
127 131
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
133 |
116 122 132
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
134 |
52 133
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
135 |
134
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
136 |
135
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
137 |
42 5
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 4 · 𝑛 ) ∈ ℕ0 ) |
138 |
9 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
139 |
50 45
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ∈ ℂ ) |
140 |
138 139
|
mulcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
141 |
140
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
142 |
141
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
143 |
125 123
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
144 |
143
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
145 |
128 118
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → 𝐸 = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
146 |
145 111 104 64
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
147 |
146 64
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
148 |
147
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
149 |
|
nnne0 |
⊢ ( ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
150 |
55 56 149
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
151 |
58 64 150 76
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ≠ 0 ) |
152 |
106 151
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
153 |
125 152
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ≠ 0 ) |
154 |
143 153 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ≠ 0 ) |
155 |
146 76
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
156 |
147 155 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ≠ 0 ) |
157 |
139 144 138 148 154 156
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
158 |
157
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
159 |
158
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
160 |
35 33
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
161 |
160 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
162 |
39 46
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
163 |
161 162 144 154
|
div23d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
165 |
164
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
166 |
161 144 154
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) |
167 |
138 148 156
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ∈ ℂ ) |
168 |
166 162 167
|
mulassd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) ) |
169 |
168
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
170 |
162 167
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ∈ ℂ ) |
171 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
172 |
11 171
|
addcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
173 |
|
0red |
⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
174 |
104
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
175 |
|
2re |
⊢ 2 ∈ ℝ |
176 |
175
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
177 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
178 |
176 177
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
179 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
180 |
178 179
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
181 |
104
|
nngt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( 2 · 𝑛 ) ) |
182 |
174
|
ltp1d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) < ( ( 2 · 𝑛 ) + 1 ) ) |
183 |
173 174 180 181 182
|
lttrd |
⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
184 |
183
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
185 |
166 170 172 184
|
divassd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
186 |
162 138 148 156
|
div12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
187 |
12 20 42
|
mulexpd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) ) |
188 |
61 63
|
sqmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
189 |
187 188
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
190 |
146
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) |
191 |
39 190
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
192 |
12 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) ∈ ℂ ) |
193 |
61
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ∈ ℂ ) |
194 |
20 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
195 |
63
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
196 |
61 68 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ≠ 0 ) |
197 |
63 75 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ≠ 0 ) |
198 |
192 193 194 195 196 197
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
199 |
189 191 198
|
3eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
200 |
199
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) ) |
201 |
66
|
rprege0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( 2 · 𝑛 ) ) ) ) |
202 |
|
resqrtth |
⊢ ( ( ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( 2 · 𝑛 ) ) ) → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
203 |
201 202
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
204 |
203
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( 2 · ( 2 · 𝑛 ) ) ) ) |
205 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
206 |
205
|
eqcomi |
⊢ 4 = ( 2 · 2 ) |
207 |
206
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 = ( 2 · 2 ) ) |
208 |
207
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ ( 2 · 2 ) ) ) |
209 |
12 54 54
|
expmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ ( 2 · 2 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ↑ 2 ) ) |
210 |
25
|
rprege0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑛 ) ) ) |
211 |
|
resqrtth |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑛 ) ) → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( 2 · 𝑛 ) ) |
212 |
210 211
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( 2 · 𝑛 ) ) |
213 |
212
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ↑ 2 ) = ( ( 2 · 𝑛 ) ↑ 2 ) ) |
214 |
208 209 213
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) = ( ( 2 · 𝑛 ) ↑ 2 ) ) |
215 |
9 9 10
|
mulassd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 2 ) · 𝑛 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
216 |
205
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 2 ) = 4 ) |
217 |
216
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 2 ) · 𝑛 ) = ( 4 · 𝑛 ) ) |
218 |
215 217
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) = ( 4 · 𝑛 ) ) |
219 |
214 218
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( 2 · ( 2 · 𝑛 ) ) ) = ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) ) |
220 |
9 10
|
sqmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
221 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
222 |
221
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 2 ) = 4 ) |
223 |
222
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) = ( 4 · ( 𝑛 ↑ 2 ) ) ) |
224 |
220 223
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ 2 ) = ( 4 · ( 𝑛 ↑ 2 ) ) ) |
225 |
224
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) = ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) ) |
226 |
|
4cn |
⊢ 4 ∈ ℂ |
227 |
|
4ne0 |
⊢ 4 ≠ 0 |
228 |
226 227
|
dividi |
⊢ ( 4 / 4 ) = 1 |
229 |
228
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 4 / 4 ) = 1 ) |
230 |
10
|
sqvald |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
231 |
230
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = ( ( 𝑛 · 𝑛 ) / 𝑛 ) ) |
232 |
10 10 28
|
divcan4d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 · 𝑛 ) / 𝑛 ) = 𝑛 ) |
233 |
231 232
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = 𝑛 ) |
234 |
229 233
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 / 4 ) · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( 1 · 𝑛 ) ) |
235 |
42
|
nn0cnd |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℂ ) |
236 |
10
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
237 |
227
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ≠ 0 ) |
238 |
235 235 236 10 237 28
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 / 4 ) · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) ) |
239 |
10
|
mulid2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 · 𝑛 ) = 𝑛 ) |
240 |
234 238 239
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) = 𝑛 ) |
241 |
225 240
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) = 𝑛 ) |
242 |
204 219 241
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = 𝑛 ) |
243 |
10 235
|
mulcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 4 ) = ( 4 · 𝑛 ) ) |
244 |
243
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 𝑛 · 4 ) ) = ( ( 𝑛 / e ) ↑ ( 4 · 𝑛 ) ) ) |
245 |
19 42 5
|
expmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 𝑛 · 4 ) ) = ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) |
246 |
10 15 18 137
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 4 · 𝑛 ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
247 |
244 245 246
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
248 |
9 10 9
|
mul32d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) · 2 ) = ( ( 2 · 2 ) · 𝑛 ) ) |
249 |
248 217
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) · 2 ) = ( 4 · 𝑛 ) ) |
250 |
249
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( ( 2 · 𝑛 ) · 2 ) ) = ( ( ( 2 · 𝑛 ) / e ) ↑ ( 4 · 𝑛 ) ) ) |
251 |
62 54 55
|
expmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( ( 2 · 𝑛 ) · 2 ) ) = ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
252 |
11 15 18 137
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 4 · 𝑛 ) ) = ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
253 |
250 251 252
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
254 |
247 253
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) ) |
255 |
247 194
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ∈ ℂ ) |
256 |
11 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
257 |
15 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( e ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
258 |
47 30
|
zmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 4 · 𝑛 ) ∈ ℤ ) |
259 |
11 70 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
260 |
15 18 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( e ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
261 |
255 256 257 259 260
|
divdiv2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) = ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) ) |
262 |
10 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
263 |
262 257 260
|
divcan1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) = ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) |
264 |
263
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) ) |
265 |
9 10 137
|
mulexpd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) |
266 |
265
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) ) |
267 |
138 262
|
mulcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
268 |
267
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
269 |
10 28 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
270 |
9 69 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
271 |
262 262 138 269 270
|
divdiv1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) / ( 2 ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
272 |
262 269
|
dividd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) = 1 ) |
273 |
272
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) / ( 2 ↑ ( 4 · 𝑛 ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
274 |
268 271 273
|
3eqtr2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
275 |
264 266 274
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
276 |
254 261 275
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
277 |
242 276
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
278 |
277
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) ) |
279 |
138 270
|
reccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ∈ ℂ ) |
280 |
138 10 279
|
mul12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) ) |
281 |
10
|
mulid1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 1 ) = 𝑛 ) |
282 |
138 270
|
recidd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) = 1 ) |
283 |
282
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( 𝑛 · 1 ) ) |
284 |
281 283 233
|
3eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
285 |
278 280 284
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
286 |
186 200 285
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
287 |
286
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( 𝑛 ↑ 2 ) / 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
288 |
236 10 172 28 184
|
divdiv1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) / 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
289 |
287 288
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
290 |
289
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
291 |
185 290
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
292 |
165 169 291
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
293 |
142 159 292
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
294 |
293
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
295 |
4 136 294
|
3eqtri |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |