| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem3.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 2 |
|
stirlinglem3.2 |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 3 |
|
stirlinglem3.3 |
⊢ 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 4 |
|
stirlinglem3.4 |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 5 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 6 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 7 |
|
nncn |
⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 8 |
5 6 7
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℂ ) |
| 9 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
| 10 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 11 |
9 10
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℂ ) |
| 12 |
11
|
sqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 13 |
|
ere |
⊢ e ∈ ℝ |
| 14 |
13
|
recni |
⊢ e ∈ ℂ |
| 15 |
14
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℂ ) |
| 16 |
|
epos |
⊢ 0 < e |
| 17 |
13 16
|
gt0ne0ii |
⊢ e ≠ 0 |
| 18 |
17
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
| 19 |
10 15 18
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℂ ) |
| 20 |
19 5
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℂ ) |
| 21 |
12 20
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 22 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 23 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
| 24 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 25 |
23 24
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
| 26 |
25
|
sqrtgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · 𝑛 ) ) ) |
| 27 |
26
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 28 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
| 29 |
10 15 28 18
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ≠ 0 ) |
| 30 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 31 |
19 29 30
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ≠ 0 ) |
| 32 |
12 20 27 31
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ≠ 0 ) |
| 33 |
8 21 32
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 34 |
1
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ∈ ℂ ) → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 35 |
33 34
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 36 |
35
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) = ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) ) |
| 37 |
3
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℂ ) → ( 𝐸 ‘ 𝑛 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 38 |
21 37
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ 𝑛 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) |
| 40 |
36 39
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) = ( ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
| 41 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 42 |
41
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℕ0 ) |
| 43 |
8 21 32 42
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) = ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ↑ 4 ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) = ( ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) ) |
| 45 |
8 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 46 |
21 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ∈ ℂ ) |
| 47 |
42
|
nn0zd |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℤ ) |
| 48 |
21 32 47
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ≠ 0 ) |
| 49 |
45 46 48
|
divcan1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ 𝑛 ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) · ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) ) = ( ( ! ‘ 𝑛 ) ↑ 4 ) ) |
| 50 |
40 44 49
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) = ( ( ! ‘ 𝑛 ) ↑ 4 ) ) |
| 51 |
50
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) ↑ 4 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) ) |
| 53 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 54 |
53
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ0 ) |
| 55 |
54 5
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 56 |
|
faccl |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ ) |
| 57 |
|
nncn |
⊢ ( ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 58 |
55 56 57
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 59 |
58
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 60 |
9 11
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 61 |
60
|
sqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 62 |
11 15 18
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) / e ) ∈ ℂ ) |
| 63 |
62 55
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 64 |
61 63
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
| 65 |
64
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 66 |
23 25
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 67 |
66
|
sqrtgt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 68 |
67
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ≠ 0 ) |
| 69 |
23
|
rpne0d |
⊢ ( 𝑛 ∈ ℕ → 2 ≠ 0 ) |
| 70 |
9 10 69 28
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ≠ 0 ) |
| 71 |
11 15 70 18
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) / e ) ≠ 0 ) |
| 72 |
|
2z |
⊢ 2 ∈ ℤ |
| 73 |
72
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℤ ) |
| 74 |
73 30
|
zmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 75 |
62 71 74
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 76 |
61 63 68 75
|
mulne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ≠ 0 ) |
| 77 |
64 76 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ≠ 0 ) |
| 78 |
59 65 77
|
divcan1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 79 |
58 64 76 54
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 80 |
79
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) ) |
| 81 |
80
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 82 |
78 81
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 83 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑚 ) ) |
| 84 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 · 𝑛 ) = ( 2 · 𝑚 ) ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑚 ) ) ) |
| 86 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 / e ) = ( 𝑚 / e ) ) |
| 87 |
|
id |
⊢ ( 𝑛 = 𝑚 → 𝑛 = 𝑚 ) |
| 88 |
86 87
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑚 / e ) ↑ 𝑚 ) ) |
| 89 |
85 88
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) |
| 90 |
83 89
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 91 |
90
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 92 |
1 91
|
eqtri |
⊢ 𝐴 = ( 𝑚 ∈ ℕ ↦ ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 93 |
|
fveq2 |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 2 · 𝑛 ) ) ) |
| 94 |
|
oveq2 |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( 2 · 𝑚 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( √ ‘ ( 2 · 𝑚 ) ) = ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 96 |
|
oveq1 |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( 𝑚 / e ) = ( ( 2 · 𝑛 ) / e ) ) |
| 97 |
|
id |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → 𝑚 = ( 2 · 𝑛 ) ) |
| 98 |
96 97
|
oveq12d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( 𝑚 / e ) ↑ 𝑚 ) = ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) |
| 99 |
95 98
|
oveq12d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 100 |
93 99
|
oveq12d |
⊢ ( 𝑚 = ( 2 · 𝑛 ) → ( ( ! ‘ 𝑚 ) / ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 101 |
|
2nn |
⊢ 2 ∈ ℕ |
| 102 |
101
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 103 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 104 |
102 103
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 105 |
58 64 76
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ∈ ℂ ) |
| 106 |
92 100 104 105
|
fvmptd3 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
| 107 |
106
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) ) |
| 108 |
107
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 109 |
108
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 110 |
|
eqidd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 111 |
99
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 = ( 2 · 𝑛 ) ) → ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 112 |
110 111 104 64
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 113 |
112
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) |
| 114 |
113
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 115 |
114
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 116 |
82 109 115
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 117 |
89
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) |
| 118 |
117
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 119 |
118
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
| 120 |
119
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
| 121 |
120
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 122 |
121
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 123 |
106 105
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 124 |
2
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 125 |
123 124
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 126 |
125
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( 𝐷 ‘ 𝑛 ) ) |
| 127 |
126
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 128 |
3
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 𝐸 = ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 129 |
128
|
fveq1d |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ) |
| 130 |
129
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) = ( 𝐸 ‘ ( 2 · 𝑛 ) ) ) |
| 131 |
130
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 132 |
127 131
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) · ( ( ( 𝑛 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 133 |
116 122 132
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 134 |
52 133
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 135 |
134
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 136 |
135
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ! ‘ 𝑛 ) ↑ 4 ) ) / ( ( ! ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 137 |
42 5
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ → ( 4 · 𝑛 ) ∈ ℕ0 ) |
| 138 |
9 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 139 |
50 45
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ∈ ℂ ) |
| 140 |
138 139
|
mulcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 141 |
140
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 142 |
141
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 143 |
125 123
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 144 |
143
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
| 145 |
128 118
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → 𝐸 = ( 𝑚 ∈ ℕ ↦ ( ( √ ‘ ( 2 · 𝑚 ) ) · ( ( 𝑚 / e ) ↑ 𝑚 ) ) ) ) |
| 146 |
145 111 104 64
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) = ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) |
| 147 |
146 64
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 148 |
147
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 149 |
|
nnne0 |
⊢ ( ( ! ‘ ( 2 · 𝑛 ) ) ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 150 |
55 56 149
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 151 |
58 64 150 76
|
divne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ ( 2 · 𝑛 ) ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ) ≠ 0 ) |
| 152 |
106 151
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 153 |
125 152
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐷 ‘ 𝑛 ) ≠ 0 ) |
| 154 |
143 153 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ≠ 0 ) |
| 155 |
146 76
|
eqnetrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐸 ‘ ( 2 · 𝑛 ) ) ≠ 0 ) |
| 156 |
147 155 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ≠ 0 ) |
| 157 |
139 144 138 148 154 156
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 158 |
157
|
eqcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 159 |
158
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 160 |
35 33
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 161 |
160 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 162 |
39 46
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 163 |
161 162 144 154
|
div23d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) |
| 164 |
163
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 165 |
164
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 166 |
161 144 154
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℂ ) |
| 167 |
138 148 156
|
divcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ∈ ℂ ) |
| 168 |
166 162 167
|
mulassd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) ) |
| 169 |
168
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 170 |
162 167
|
mulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ∈ ℂ ) |
| 171 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
| 172 |
11 171
|
addcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
| 173 |
|
0red |
⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
| 174 |
104
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 175 |
|
2re |
⊢ 2 ∈ ℝ |
| 176 |
175
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 177 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 178 |
176 177
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 179 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
| 180 |
178 179
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
| 181 |
104
|
nngt0d |
⊢ ( 𝑛 ∈ ℕ → 0 < ( 2 · 𝑛 ) ) |
| 182 |
174
|
ltp1d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) < ( ( 2 · 𝑛 ) + 1 ) ) |
| 183 |
173 174 180 181 182
|
lttrd |
⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
| 184 |
183
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
| 185 |
166 170 172 184
|
divassd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 186 |
162 138 148 156
|
div12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 187 |
12 20 42
|
mulexpd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) ) |
| 188 |
61 63
|
sqmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) |
| 189 |
187 188
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 190 |
146
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) |
| 191 |
39 190
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ↑ 4 ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) · ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ) ↑ 2 ) ) ) |
| 192 |
12 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) ∈ ℂ ) |
| 193 |
61
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 194 |
20 42
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 195 |
63
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℂ ) |
| 196 |
61 68 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ≠ 0 ) |
| 197 |
63 75 73
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ≠ 0 ) |
| 198 |
192 193 194 195 196 197
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) · ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) / ( ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) · ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 199 |
189 191 198
|
3eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) |
| 200 |
199
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) ) |
| 201 |
66
|
rprege0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 202 |
|
resqrtth |
⊢ ( ( ( 2 · ( 2 · 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( 2 · 𝑛 ) ) ) → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
| 203 |
201 202
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
| 204 |
203
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( 2 · ( 2 · 𝑛 ) ) ) ) |
| 205 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 206 |
205
|
eqcomi |
⊢ 4 = ( 2 · 2 ) |
| 207 |
206
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 = ( 2 · 2 ) ) |
| 208 |
207
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) = ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ ( 2 · 2 ) ) ) |
| 209 |
12 54 54
|
expmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ ( 2 · 2 ) ) = ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ↑ 2 ) ) |
| 210 |
25
|
rprege0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑛 ) ) ) |
| 211 |
|
resqrtth |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑛 ) ) → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( 2 · 𝑛 ) ) |
| 212 |
210 211
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) = ( 2 · 𝑛 ) ) |
| 213 |
212
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ↑ 2 ) = ( ( 2 · 𝑛 ) ↑ 2 ) ) |
| 214 |
208 209 213
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) = ( ( 2 · 𝑛 ) ↑ 2 ) ) |
| 215 |
9 9 10
|
mulassd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 2 ) · 𝑛 ) = ( 2 · ( 2 · 𝑛 ) ) ) |
| 216 |
205
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 2 ) = 4 ) |
| 217 |
216
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 2 ) · 𝑛 ) = ( 4 · 𝑛 ) ) |
| 218 |
215 217
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 2 · 𝑛 ) ) = ( 4 · 𝑛 ) ) |
| 219 |
214 218
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( 2 · ( 2 · 𝑛 ) ) ) = ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) ) |
| 220 |
9 10
|
sqmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) ) |
| 221 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 222 |
221
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 2 ) = 4 ) |
| 223 |
222
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ 2 ) · ( 𝑛 ↑ 2 ) ) = ( 4 · ( 𝑛 ↑ 2 ) ) ) |
| 224 |
220 223
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ 2 ) = ( 4 · ( 𝑛 ↑ 2 ) ) ) |
| 225 |
224
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) = ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) ) |
| 226 |
|
4cn |
⊢ 4 ∈ ℂ |
| 227 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 228 |
226 227
|
dividi |
⊢ ( 4 / 4 ) = 1 |
| 229 |
228
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 4 / 4 ) = 1 ) |
| 230 |
10
|
sqvald |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) = ( 𝑛 · 𝑛 ) ) |
| 231 |
230
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = ( ( 𝑛 · 𝑛 ) / 𝑛 ) ) |
| 232 |
10 10 28
|
divcan4d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 · 𝑛 ) / 𝑛 ) = 𝑛 ) |
| 233 |
231 232
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ 2 ) / 𝑛 ) = 𝑛 ) |
| 234 |
229 233
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 / 4 ) · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( 1 · 𝑛 ) ) |
| 235 |
42
|
nn0cnd |
⊢ ( 𝑛 ∈ ℕ → 4 ∈ ℂ ) |
| 236 |
10
|
sqcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ 2 ) ∈ ℂ ) |
| 237 |
227
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 4 ≠ 0 ) |
| 238 |
235 235 236 10 237 28
|
divmuldivd |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 / 4 ) · ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) = ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) ) |
| 239 |
10
|
mullidd |
⊢ ( 𝑛 ∈ ℕ → ( 1 · 𝑛 ) = 𝑛 ) |
| 240 |
234 238 239
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( 4 · ( 𝑛 ↑ 2 ) ) / ( 4 · 𝑛 ) ) = 𝑛 ) |
| 241 |
225 240
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) ↑ 2 ) / ( 4 · 𝑛 ) ) = 𝑛 ) |
| 242 |
204 219 241
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) = 𝑛 ) |
| 243 |
10 235
|
mulcomd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 4 ) = ( 4 · 𝑛 ) ) |
| 244 |
243
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 𝑛 · 4 ) ) = ( ( 𝑛 / e ) ↑ ( 4 · 𝑛 ) ) ) |
| 245 |
19 42 5
|
expmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 𝑛 · 4 ) ) = ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) ) |
| 246 |
10 15 18 137
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ ( 4 · 𝑛 ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 247 |
244 245 246
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 248 |
9 10 9
|
mul32d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) · 2 ) = ( ( 2 · 2 ) · 𝑛 ) ) |
| 249 |
248 217
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) · 2 ) = ( 4 · 𝑛 ) ) |
| 250 |
249
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( ( 2 · 𝑛 ) · 2 ) ) = ( ( ( 2 · 𝑛 ) / e ) ↑ ( 4 · 𝑛 ) ) ) |
| 251 |
62 54 55
|
expmuld |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( ( 2 · 𝑛 ) · 2 ) ) = ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 252 |
11 15 18 137
|
expdivd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 2 · 𝑛 ) / e ) ↑ ( 4 · 𝑛 ) ) = ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 253 |
250 251 252
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) = ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) |
| 254 |
247 253
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 255 |
247 194
|
eqeltrrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ∈ ℂ ) |
| 256 |
11 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 257 |
15 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( e ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 258 |
47 30
|
zmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 4 · 𝑛 ) ∈ ℤ ) |
| 259 |
11 70 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 260 |
15 18 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( e ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 261 |
255 256 257 259 260
|
divdiv2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) ) = ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) ) |
| 262 |
10 137
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 4 · 𝑛 ) ) ∈ ℂ ) |
| 263 |
262 257 260
|
divcan1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) = ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) |
| 264 |
263
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) ) |
| 265 |
9 10 137
|
mulexpd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) |
| 266 |
265
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 267 |
138 262
|
mulcomd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 268 |
267
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 269 |
10 28 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 270 |
9 69 258
|
expne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ ( 4 · 𝑛 ) ) ≠ 0 ) |
| 271 |
262 262 138 269 270
|
divdiv1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) / ( 2 ↑ ( 4 · 𝑛 ) ) ) = ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) · ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 272 |
262 269
|
dividd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) = 1 ) |
| 273 |
272
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) / ( 2 ↑ ( 4 · 𝑛 ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 274 |
268 271 273
|
3eqtr2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 ↑ ( 4 · 𝑛 ) ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 275 |
264 266 274
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 ↑ ( 4 · 𝑛 ) ) / ( e ↑ ( 4 · 𝑛 ) ) ) · ( e ↑ ( 4 · 𝑛 ) ) ) / ( ( 2 · 𝑛 ) ↑ ( 4 · 𝑛 ) ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 276 |
254 261 275
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) = ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) |
| 277 |
242 276
|
oveq12d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) |
| 278 |
277
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) = ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) ) |
| 279 |
138 270
|
reccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ∈ ℂ ) |
| 280 |
138 10 279
|
mul12d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 𝑛 · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) ) |
| 281 |
10
|
mulridd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · 1 ) = 𝑛 ) |
| 282 |
138 270
|
recidd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) = 1 ) |
| 283 |
282
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( 𝑛 · 1 ) ) |
| 284 |
281 283 233
|
3eqtr4d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( 1 / ( 2 ↑ ( 4 · 𝑛 ) ) ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 285 |
278 280 284
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( ( √ ‘ ( 2 · 𝑛 ) ) ↑ 4 ) / ( ( √ ‘ ( 2 · ( 2 · 𝑛 ) ) ) ↑ 2 ) ) · ( ( ( ( 𝑛 / e ) ↑ 𝑛 ) ↑ 4 ) / ( ( ( ( 2 · 𝑛 ) / e ) ↑ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 286 |
186 200 285
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) = ( ( 𝑛 ↑ 2 ) / 𝑛 ) ) |
| 287 |
286
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( 𝑛 ↑ 2 ) / 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 288 |
236 10 172 28 184
|
divdiv1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ↑ 2 ) / 𝑛 ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 289 |
287 288
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 290 |
289
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 291 |
185 290
|
eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 292 |
165 169 291
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 2 ↑ ( 4 · 𝑛 ) ) / ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 293 |
142 159 292
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 294 |
293
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( ( 2 ↑ ( 4 · 𝑛 ) ) · ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) · ( ( 𝐸 ‘ 𝑛 ) ↑ 4 ) ) ) / ( ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) · ( ( 𝐸 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
| 295 |
4 136 294
|
3eqtri |
⊢ 𝑉 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) · ( ( 𝑛 ↑ 2 ) / ( 𝑛 · ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |