| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem4.1 |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 2 |
|
stirlinglem4.2 |
⊢ 𝐵 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
| 3 |
|
stirlinglem4.3 |
⊢ 𝐽 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) |
| 4 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 5 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 6 |
5
|
nn0ge0d |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 7 |
4 6
|
ge0p1rpd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ+ ) |
| 8 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
| 9 |
7 8
|
rpdivcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℝ+ ) |
| 10 |
9
|
rpsqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℝ+ ) |
| 11 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 12 |
9 11
|
rpexpcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ∈ ℝ+ ) |
| 13 |
10 12
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ∈ ℝ+ ) |
| 14 |
|
epr |
⊢ e ∈ ℝ+ |
| 15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ → e ∈ ℝ+ ) |
| 16 |
13 15
|
relogdivd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) / e ) ) = ( ( log ‘ ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) − ( log ‘ e ) ) ) |
| 17 |
10 12
|
relogmuld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) = ( ( log ‘ ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) + ( log ‘ ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) ) |
| 18 |
|
logsqrt |
⊢ ( ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℝ+ → ( log ‘ ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / 2 ) ) |
| 19 |
9 18
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / 2 ) ) |
| 20 |
|
relogexp |
⊢ ( ( ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( log ‘ ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 21 |
9 11 20
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) = ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 22 |
19 21
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) + ( log ‘ ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) = ( ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / 2 ) + ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) ) |
| 23 |
17 22
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) = ( ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / 2 ) + ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) ) |
| 24 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
| 25 |
24
|
nncnd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
| 26 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 27 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 28 |
25 26 27
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℂ ) |
| 29 |
24
|
nnne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
| 30 |
25 26 29 27
|
divne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ≠ 0 ) |
| 31 |
28 30
|
logcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℂ ) |
| 32 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
| 33 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 34 |
33
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
| 35 |
34
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
| 36 |
31 32 35
|
divrec2d |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / 2 ) = ( ( 1 / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 37 |
36
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / 2 ) + ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) = ( ( ( 1 / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) + ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) ) |
| 38 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 39 |
38
|
halfcld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 2 ) ∈ ℂ ) |
| 40 |
39 26 31
|
adddird |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / 2 ) + 𝑁 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( ( 1 / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) + ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) ) |
| 41 |
26 32 35
|
divcan4d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 · 2 ) / 2 ) = 𝑁 ) |
| 42 |
26 32
|
mulcomd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 · 2 ) = ( 2 · 𝑁 ) ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 · 2 ) / 2 ) = ( ( 2 · 𝑁 ) / 2 ) ) |
| 44 |
41 43
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( ( 2 · 𝑁 ) / 2 ) ) |
| 45 |
44
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 2 ) + 𝑁 ) = ( ( 1 / 2 ) + ( ( 2 · 𝑁 ) / 2 ) ) ) |
| 46 |
32 26
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℂ ) |
| 47 |
38 46 32 35
|
divdird |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) = ( ( 1 / 2 ) + ( ( 2 · 𝑁 ) / 2 ) ) ) |
| 48 |
45 47
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / 2 ) + 𝑁 ) = ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ) |
| 49 |
48
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / 2 ) + 𝑁 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 50 |
40 49
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) + ( 𝑁 · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 51 |
23 37 50
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 52 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 53 |
52
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ e ) = 1 ) |
| 54 |
51 53
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) − ( log ‘ e ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 55 |
16 54
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) / e ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 56 |
1
|
stirlinglem2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) ∈ ℝ+ ) |
| 57 |
56
|
relogcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ ) |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑁 |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑛 log |
| 60 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) |
| 61 |
1 60
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐴 |
| 62 |
61 58
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑁 ) |
| 63 |
59 62
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑁 ) ) |
| 64 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑁 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 65 |
58 63 64 2
|
fvmptf |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ∈ ℝ ) → ( 𝐵 ‘ 𝑁 ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 66 |
57 65
|
mpdan |
⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ 𝑁 ) = ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑘 ( log ‘ ( 𝐴 ‘ 𝑛 ) ) |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 69 |
61 68
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑘 ) |
| 70 |
59 69
|
nffv |
⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑘 ) ) |
| 71 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( log ‘ ( 𝐴 ‘ 𝑛 ) ) = ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 72 |
67 70 71
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 73 |
2 72
|
eqtri |
⊢ 𝐵 = ( 𝑘 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 74 |
73
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 𝐵 = ( 𝑘 ∈ ℕ ↦ ( log ‘ ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 75 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → 𝑘 = ( 𝑁 + 1 ) ) |
| 76 |
75
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) |
| 77 |
76
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( log ‘ ( 𝐴 ‘ 𝑘 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ) |
| 78 |
1
|
stirlinglem2 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( 𝐴 ‘ ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 79 |
24 78
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 80 |
79
|
relogcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ∈ ℝ ) |
| 81 |
74 77 24 80
|
fvmptd |
⊢ ( 𝑁 ∈ ℕ → ( 𝐵 ‘ ( 𝑁 + 1 ) ) = ( log ‘ ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ) |
| 82 |
66 81
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) = ( ( log ‘ ( 𝐴 ‘ 𝑁 ) ) − ( log ‘ ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 83 |
56 79
|
relogdivd |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝐴 ‘ 𝑁 ) / ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ) = ( ( log ‘ ( 𝐴 ‘ 𝑁 ) ) − ( log ‘ ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ) ) |
| 84 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
| 85 |
|
nnrp |
⊢ ( ( ! ‘ 𝑁 ) ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℝ+ ) |
| 86 |
5 84 85
|
3syl |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℝ+ ) |
| 87 |
34 8
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ+ ) |
| 88 |
87
|
rpsqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) |
| 89 |
8 15
|
rpdivcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 / e ) ∈ ℝ+ ) |
| 90 |
89 11
|
rpexpcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / e ) ↑ 𝑁 ) ∈ ℝ+ ) |
| 91 |
88 90
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ∈ ℝ+ ) |
| 92 |
86 91
|
rpdivcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) |
| 93 |
1
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) ) |
| 94 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) |
| 95 |
94
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑁 ) ) |
| 96 |
94
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) |
| 97 |
96
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑁 ) ) ) |
| 98 |
94
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( 𝑛 / e ) = ( 𝑁 / e ) ) |
| 99 |
98 94
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑁 / e ) ↑ 𝑁 ) ) |
| 100 |
97 99
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) |
| 101 |
95 100
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) ∧ 𝑛 = 𝑁 ) → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 102 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝑁 ∈ ℕ ) |
| 103 |
86
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ! ‘ 𝑁 ) ∈ ℂ ) |
| 105 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 2 ∈ ℂ ) |
| 106 |
102
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝑁 ∈ ℂ ) |
| 107 |
105 106
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( 2 · 𝑁 ) ∈ ℂ ) |
| 108 |
107
|
sqrtcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 109 |
|
ere |
⊢ e ∈ ℝ |
| 110 |
109
|
recni |
⊢ e ∈ ℂ |
| 111 |
110
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → e ∈ ℂ ) |
| 112 |
|
0re |
⊢ 0 ∈ ℝ |
| 113 |
|
epos |
⊢ 0 < e |
| 114 |
112 113
|
gtneii |
⊢ e ≠ 0 |
| 115 |
114
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → e ≠ 0 ) |
| 116 |
106 111 115
|
divcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( 𝑁 / e ) ∈ ℂ ) |
| 117 |
102
|
nnnn0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝑁 ∈ ℕ0 ) |
| 118 |
116 117
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ( 𝑁 / e ) ↑ 𝑁 ) ∈ ℂ ) |
| 119 |
108 118
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ∈ ℂ ) |
| 120 |
88
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · 𝑁 ) ) ≠ 0 ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( √ ‘ ( 2 · 𝑁 ) ) ≠ 0 ) |
| 122 |
102
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝑁 ≠ 0 ) |
| 123 |
106 111 122 115
|
divne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( 𝑁 / e ) ≠ 0 ) |
| 124 |
102
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → 𝑁 ∈ ℤ ) |
| 125 |
116 123 124
|
expne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ( 𝑁 / e ) ↑ 𝑁 ) ≠ 0 ) |
| 126 |
108 118 121 125
|
mulne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ≠ 0 ) |
| 127 |
104 119 126
|
divcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℂ ) |
| 128 |
93 101 102 127
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ∈ ℝ+ ) → ( 𝐴 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 129 |
92 128
|
mpdan |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ 𝑁 ) = ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 130 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
| 131 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 132 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑘 ) ) |
| 133 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 134 |
133
|
fveq2d |
⊢ ( 𝑛 = 𝑘 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑘 ) ) ) |
| 135 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 / e ) = ( 𝑘 / e ) ) |
| 136 |
|
id |
⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) |
| 137 |
135 136
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 / e ) ↑ 𝑛 ) = ( ( 𝑘 / e ) ↑ 𝑘 ) ) |
| 138 |
134 137
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) = ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) |
| 139 |
132 138
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) = ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 140 |
130 131 139
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( ( √ ‘ ( 2 · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 141 |
1 140
|
eqtri |
⊢ 𝐴 = ( 𝑘 ∈ ℕ ↦ ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) |
| 142 |
141
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 𝐴 = ( 𝑘 ∈ ℕ ↦ ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) ) ) |
| 143 |
75
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( ! ‘ 𝑘 ) = ( ! ‘ ( 𝑁 + 1 ) ) ) |
| 144 |
75
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑁 + 1 ) ) ) |
| 145 |
144
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( √ ‘ ( 2 · 𝑘 ) ) = ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) ) |
| 146 |
75
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( 𝑘 / e ) = ( ( 𝑁 + 1 ) / e ) ) |
| 147 |
146 75
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( ( 𝑘 / e ) ↑ 𝑘 ) = ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) |
| 148 |
145 147
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) = ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) |
| 149 |
143 148
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = ( 𝑁 + 1 ) ) → ( ( ! ‘ 𝑘 ) / ( ( √ ‘ ( 2 · 𝑘 ) ) · ( ( 𝑘 / e ) ↑ 𝑘 ) ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 150 |
24
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 151 |
|
faccl |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( ! ‘ ( 𝑁 + 1 ) ) ∈ ℕ ) |
| 152 |
|
nnrp |
⊢ ( ( ! ‘ ( 𝑁 + 1 ) ) ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 153 |
150 151 152
|
3syl |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 154 |
34 7
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 155 |
154
|
rpsqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) ∈ ℝ+ ) |
| 156 |
7 15
|
rpdivcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / e ) ∈ ℝ+ ) |
| 157 |
11
|
peano2zd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℤ ) |
| 158 |
156 157
|
rpexpcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ∈ ℝ+ ) |
| 159 |
155 158
|
rpmulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ∈ ℝ+ ) |
| 160 |
153 159
|
rpdivcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ∈ ℝ+ ) |
| 161 |
142 149 24 160
|
fvmptd |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 162 |
129 161
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐴 ‘ 𝑁 ) / ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) = ( ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) |
| 163 |
|
facp1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 164 |
5 163
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ ( 𝑁 + 1 ) ) = ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 165 |
164
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) = ( ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 166 |
159
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 167 |
159
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ≠ 0 ) |
| 168 |
103 25 166 167
|
divassd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) · ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) = ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) |
| 169 |
165 168
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) = ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) |
| 170 |
169
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) ) |
| 171 |
91
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ∈ ℂ ) |
| 172 |
25 166 167
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ∈ ℂ ) |
| 173 |
103 172
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ∈ ℂ ) |
| 174 |
91
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ≠ 0 ) |
| 175 |
86
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ≠ 0 ) |
| 176 |
25 166 29 167
|
divne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ≠ 0 ) |
| 177 |
103 172 175 176
|
mulne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ≠ 0 ) |
| 178 |
103 171 173 174 177
|
divdiv32d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) = ( ( ( ! ‘ 𝑁 ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 179 |
103 103 172 175 176
|
divdiv1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) ) |
| 180 |
179
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) = ( ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) |
| 181 |
180
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 182 |
103 175
|
dividd |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) = 1 ) |
| 183 |
182
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) = ( 1 / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) |
| 184 |
183
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ! ‘ 𝑁 ) / ( ! ‘ 𝑁 ) ) / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( 1 / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 185 |
25 166 29 167
|
recdivd |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) = ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |
| 186 |
185
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 187 |
166 25 29
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 188 |
88
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 189 |
90
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / e ) ↑ 𝑁 ) ∈ ℂ ) |
| 190 |
90
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / e ) ↑ 𝑁 ) ≠ 0 ) |
| 191 |
187 188 189 120 190
|
divdiv1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 192 |
166 25 188 29 120
|
divdiv32d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) / ( 𝑁 + 1 ) ) ) |
| 193 |
155
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 194 |
158
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 195 |
193 194 188 120
|
div23d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) |
| 196 |
34
|
rpred |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
| 197 |
34
|
rpge0d |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 2 ) |
| 198 |
24
|
nnred |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 199 |
150
|
nn0ge0d |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 𝑁 + 1 ) ) |
| 200 |
196 197 198 199
|
sqrtmuld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) = ( ( √ ‘ 2 ) · ( √ ‘ ( 𝑁 + 1 ) ) ) ) |
| 201 |
196 197 4 6
|
sqrtmuld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 2 · 𝑁 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) |
| 202 |
200 201
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ ( 𝑁 + 1 ) ) ) / ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) ) |
| 203 |
32
|
sqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ 2 ) ∈ ℂ ) |
| 204 |
25
|
sqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 205 |
26
|
sqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ 𝑁 ) ∈ ℂ ) |
| 206 |
34
|
rpsqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ 2 ) ∈ ℝ+ ) |
| 207 |
206
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ 2 ) ≠ 0 ) |
| 208 |
8
|
rpsqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
| 209 |
208
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ 𝑁 ) ≠ 0 ) |
| 210 |
203 203 204 205 207 209
|
divmuldivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ 2 ) / ( √ ‘ 2 ) ) · ( ( √ ‘ ( 𝑁 + 1 ) ) / ( √ ‘ 𝑁 ) ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ ( 𝑁 + 1 ) ) ) / ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) ) |
| 211 |
203 207
|
dividd |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ 2 ) / ( √ ‘ 2 ) ) = 1 ) |
| 212 |
198 199 8
|
sqrtdivd |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) = ( ( √ ‘ ( 𝑁 + 1 ) ) / ( √ ‘ 𝑁 ) ) ) |
| 213 |
212
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 𝑁 + 1 ) ) / ( √ ‘ 𝑁 ) ) = ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 214 |
211 213
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ 2 ) / ( √ ‘ 2 ) ) · ( ( √ ‘ ( 𝑁 + 1 ) ) / ( √ ‘ 𝑁 ) ) ) = ( 1 · ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 215 |
202 210 214
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 1 · ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 216 |
215
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) = ( ( 1 · ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) |
| 217 |
28
|
sqrtcld |
⊢ ( 𝑁 ∈ ℕ → ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℂ ) |
| 218 |
217
|
mullidd |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 219 |
218
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 · ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) |
| 220 |
195 216 219
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) |
| 221 |
220
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) / ( 𝑁 + 1 ) ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |
| 222 |
192 221
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |
| 223 |
222
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( √ ‘ ( 2 · 𝑁 ) ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) |
| 224 |
191 223
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) |
| 225 |
217 194
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ∈ ℂ ) |
| 226 |
225 25 189 29 190
|
divdiv32d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) / ( 𝑁 + 1 ) ) ) |
| 227 |
217 194 189 190
|
divassd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) ) |
| 228 |
15
|
rpcnd |
⊢ ( 𝑁 ∈ ℕ → e ∈ ℂ ) |
| 229 |
15
|
rpne0d |
⊢ ( 𝑁 ∈ ℕ → e ≠ 0 ) |
| 230 |
25 228 229 150
|
expdivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) = ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( e ↑ ( 𝑁 + 1 ) ) ) ) |
| 231 |
26 228 229 5
|
expdivd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 / e ) ↑ 𝑁 ) = ( ( 𝑁 ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) ) |
| 232 |
230 231
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( e ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) ) ) |
| 233 |
232
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( e ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) ) ) ) |
| 234 |
25 150
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 235 |
228 150
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( e ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 236 |
26 5
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 𝑁 ) ∈ ℂ ) |
| 237 |
228 5
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( e ↑ 𝑁 ) ∈ ℂ ) |
| 238 |
228 229 157
|
expne0d |
⊢ ( 𝑁 ∈ ℕ → ( e ↑ ( 𝑁 + 1 ) ) ≠ 0 ) |
| 239 |
228 229 11
|
expne0d |
⊢ ( 𝑁 ∈ ℕ → ( e ↑ 𝑁 ) ≠ 0 ) |
| 240 |
26 27 11
|
expne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 𝑁 ) ≠ 0 ) |
| 241 |
234 235 236 237 238 239 240
|
divdivdivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( e ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) ) = ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) · ( e ↑ 𝑁 ) ) / ( ( e ↑ ( 𝑁 + 1 ) ) · ( 𝑁 ↑ 𝑁 ) ) ) ) |
| 242 |
234 237
|
mulcomd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) · ( e ↑ 𝑁 ) ) = ( ( e ↑ 𝑁 ) · ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) ) ) |
| 243 |
242
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) · ( e ↑ 𝑁 ) ) / ( ( e ↑ ( 𝑁 + 1 ) ) · ( 𝑁 ↑ 𝑁 ) ) ) = ( ( ( e ↑ 𝑁 ) · ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) ) / ( ( e ↑ ( 𝑁 + 1 ) ) · ( 𝑁 ↑ 𝑁 ) ) ) ) |
| 244 |
237 235 234 236 238 240
|
divmuldivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( e ↑ 𝑁 ) / ( e ↑ ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) = ( ( ( e ↑ 𝑁 ) · ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) ) / ( ( e ↑ ( 𝑁 + 1 ) ) · ( 𝑁 ↑ 𝑁 ) ) ) ) |
| 245 |
228 5
|
expp1d |
⊢ ( 𝑁 ∈ ℕ → ( e ↑ ( 𝑁 + 1 ) ) = ( ( e ↑ 𝑁 ) · e ) ) |
| 246 |
245
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( e ↑ 𝑁 ) / ( e ↑ ( 𝑁 + 1 ) ) ) = ( ( e ↑ 𝑁 ) / ( ( e ↑ 𝑁 ) · e ) ) ) |
| 247 |
237 237 228 239 229
|
divdiv1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( e ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) / e ) = ( ( e ↑ 𝑁 ) / ( ( e ↑ 𝑁 ) · e ) ) ) |
| 248 |
237 239
|
dividd |
⊢ ( 𝑁 ∈ ℕ → ( ( e ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) = 1 ) |
| 249 |
248
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( e ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) / e ) = ( 1 / e ) ) |
| 250 |
246 247 249
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( ( e ↑ 𝑁 ) / ( e ↑ ( 𝑁 + 1 ) ) ) = ( 1 / e ) ) |
| 251 |
250
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( e ↑ 𝑁 ) / ( e ↑ ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) = ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) |
| 252 |
244 251
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( e ↑ 𝑁 ) · ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) ) / ( ( e ↑ ( 𝑁 + 1 ) ) · ( 𝑁 ↑ 𝑁 ) ) ) = ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) |
| 253 |
241 243 252
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( e ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) ) = ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) |
| 254 |
253
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( e ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 ↑ 𝑁 ) / ( e ↑ 𝑁 ) ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) ) |
| 255 |
227 233 254
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) ) |
| 256 |
255
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) / ( 𝑁 + 1 ) ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) / ( 𝑁 + 1 ) ) ) |
| 257 |
234 236 240
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ∈ ℂ ) |
| 258 |
38 228 257 229
|
div32d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) = ( 1 · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ) ) |
| 259 |
257 228 229
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ∈ ℂ ) |
| 260 |
259
|
mullidd |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ) = ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ) |
| 261 |
258 260
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) = ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ) |
| 262 |
261
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ) ) |
| 263 |
228 229
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / e ) ∈ ℂ ) |
| 264 |
263 257
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ∈ ℂ ) |
| 265 |
217 264 25 29
|
div23d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) / ( 𝑁 + 1 ) ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) ) |
| 266 |
217 25 29
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 267 |
266 257 228 229
|
divassd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / e ) ) ) |
| 268 |
262 265 267
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( 1 / e ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) ) / ( 𝑁 + 1 ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) ) |
| 269 |
226 256 268
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) / ( ( 𝑁 / e ) ↑ 𝑁 ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) ) |
| 270 |
186 224 269
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) ) |
| 271 |
181 184 270
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ( ! ‘ 𝑁 ) · ( ( 𝑁 + 1 ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) ) |
| 272 |
170 178 271
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ! ‘ 𝑁 ) / ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( 𝑁 / e ) ↑ 𝑁 ) ) ) / ( ( ! ‘ ( 𝑁 + 1 ) ) / ( ( √ ‘ ( 2 · ( 𝑁 + 1 ) ) ) · ( ( ( 𝑁 + 1 ) / e ) ↑ ( 𝑁 + 1 ) ) ) ) ) = ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) ) |
| 273 |
217 25 257 29
|
div32d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / ( 𝑁 + 1 ) ) ) ) |
| 274 |
25 5
|
expp1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) = ( ( ( 𝑁 + 1 ) ↑ 𝑁 ) · ( 𝑁 + 1 ) ) ) |
| 275 |
274
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) = ( ( ( ( 𝑁 + 1 ) ↑ 𝑁 ) · ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) ) |
| 276 |
25 5
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) ↑ 𝑁 ) ∈ ℂ ) |
| 277 |
276 25 29
|
divcan4d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ 𝑁 ) · ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) = ( ( 𝑁 + 1 ) ↑ 𝑁 ) ) |
| 278 |
275 277
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) = ( ( 𝑁 + 1 ) ↑ 𝑁 ) ) |
| 279 |
278
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) = ( ( ( 𝑁 + 1 ) ↑ 𝑁 ) / ( 𝑁 ↑ 𝑁 ) ) ) |
| 280 |
234 236 25 240 29
|
divdiv32d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / ( 𝑁 + 1 ) ) = ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) |
| 281 |
25 26 27 5
|
expdivd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) = ( ( ( 𝑁 + 1 ) ↑ 𝑁 ) / ( 𝑁 ↑ 𝑁 ) ) ) |
| 282 |
279 280 281
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / ( 𝑁 + 1 ) ) = ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) |
| 283 |
282
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) / ( 𝑁 + 1 ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) |
| 284 |
273 283
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) = ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) ) |
| 285 |
284
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) / ( 𝑁 + 1 ) ) · ( ( ( 𝑁 + 1 ) ↑ ( 𝑁 + 1 ) ) / ( 𝑁 ↑ 𝑁 ) ) ) / e ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) / e ) ) |
| 286 |
162 272 285
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐴 ‘ 𝑁 ) / ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) = ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) / e ) ) |
| 287 |
286
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝐴 ‘ 𝑁 ) / ( 𝐴 ‘ ( 𝑁 + 1 ) ) ) ) = ( log ‘ ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) / e ) ) ) |
| 288 |
82 83 287
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) = ( log ‘ ( ( ( √ ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) · ( ( ( 𝑁 + 1 ) / 𝑁 ) ↑ 𝑁 ) ) / e ) ) ) |
| 289 |
38 46
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
| 290 |
289
|
halfcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ∈ ℂ ) |
| 291 |
290 31
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ∈ ℂ ) |
| 292 |
291 38
|
subcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) |
| 293 |
3
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) → 𝐽 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) ) |
| 294 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → 𝑛 = 𝑁 ) |
| 295 |
294
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) |
| 296 |
295
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( 1 + ( 2 · 𝑛 ) ) = ( 1 + ( 2 · 𝑁 ) ) ) |
| 297 |
296
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) = ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ) |
| 298 |
294
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( 𝑛 + 1 ) = ( 𝑁 + 1 ) ) |
| 299 |
298 294
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( ( 𝑛 + 1 ) / 𝑛 ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
| 300 |
299
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) = ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
| 301 |
297 300
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
| 302 |
301
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) ∧ 𝑛 = 𝑁 ) → ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 303 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) → 𝑁 ∈ ℕ ) |
| 304 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) → ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) |
| 305 |
293 302 303 304
|
fvmptd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) → ( 𝐽 ‘ 𝑁 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 306 |
292 305
|
mpdan |
⊢ ( 𝑁 ∈ ℕ → ( 𝐽 ‘ 𝑁 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
| 307 |
55 288 306
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐵 ‘ 𝑁 ) − ( 𝐵 ‘ ( 𝑁 + 1 ) ) ) = ( 𝐽 ‘ 𝑁 ) ) |