Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem5.1 |
⊢ 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) |
2 |
|
stirlinglem5.2 |
⊢ 𝐸 = ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) |
3 |
|
stirlinglem5.3 |
⊢ 𝐹 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) |
4 |
|
stirlinglem5.4 |
⊢ 𝐻 = ( 𝑗 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) |
5 |
|
stirlinglem5.5 |
⊢ 𝐺 = ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) |
6 |
|
stirlinglem5.6 |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
7 |
|
stirlinglem5.7 |
⊢ ( 𝜑 → ( abs ‘ 𝑇 ) < 1 ) |
8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
10 |
1
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ) |
11 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) |
12 |
11
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → - 1 ∈ ℂ ) |
13 |
|
nnm1nn0 |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
15 |
12 14
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( - 1 ↑ ( 𝑗 − 1 ) ) ∈ ℂ ) |
16 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
18 |
6
|
rpred |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
21 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
23 |
20 22
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ↑ 𝑗 ) ∈ ℂ ) |
24 |
|
nnne0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ≠ 0 ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ≠ 0 ) |
26 |
15 17 23 25
|
div32d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( 𝑇 ↑ 𝑗 ) ) = ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) |
27 |
11 20
|
pncan2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 1 + 𝑇 ) − 1 ) = 𝑇 ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑇 = ( ( 1 + 𝑇 ) − 1 ) ) |
29 |
28
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑇 ↑ 𝑗 ) = ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) |
30 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( 𝑇 ↑ 𝑗 ) ) = ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) |
31 |
26 30
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) |
33 |
10 32
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) |
34 |
33
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , 𝐷 ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) ) |
35 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
36 |
35 19
|
addcld |
⊢ ( 𝜑 → ( 1 + 𝑇 ) ∈ ℂ ) |
37 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
38 |
37
|
cnmetdval |
⊢ ( ( 1 ∈ ℂ ∧ ( 1 + 𝑇 ) ∈ ℂ ) → ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) = ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) ) |
39 |
35 36 38
|
syl2anc |
⊢ ( 𝜑 → ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) = ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) ) |
40 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
41 |
40
|
a1i |
⊢ ( 𝜑 → ( 1 − 1 ) = 0 ) |
42 |
41
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 − 1 ) − 𝑇 ) = ( 0 − 𝑇 ) ) |
43 |
35 35 19
|
subsub4d |
⊢ ( 𝜑 → ( ( 1 − 1 ) − 𝑇 ) = ( 1 − ( 1 + 𝑇 ) ) ) |
44 |
|
df-neg |
⊢ - 𝑇 = ( 0 − 𝑇 ) |
45 |
44
|
eqcomi |
⊢ ( 0 − 𝑇 ) = - 𝑇 |
46 |
45
|
a1i |
⊢ ( 𝜑 → ( 0 − 𝑇 ) = - 𝑇 ) |
47 |
42 43 46
|
3eqtr3d |
⊢ ( 𝜑 → ( 1 − ( 1 + 𝑇 ) ) = - 𝑇 ) |
48 |
47
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) = ( abs ‘ - 𝑇 ) ) |
49 |
19
|
absnegd |
⊢ ( 𝜑 → ( abs ‘ - 𝑇 ) = ( abs ‘ 𝑇 ) ) |
50 |
49 7
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ - 𝑇 ) < 1 ) |
51 |
48 50
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( 1 − ( 1 + 𝑇 ) ) ) < 1 ) |
52 |
39 51
|
eqbrtrd |
⊢ ( 𝜑 → ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) < 1 ) |
53 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
54 |
53
|
a1i |
⊢ ( 𝜑 → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
55 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
56 |
55
|
rexrd |
⊢ ( 𝜑 → 1 ∈ ℝ* ) |
57 |
|
elbl2 |
⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 1 ∈ ℂ ∧ ( 1 + 𝑇 ) ∈ ℂ ) ) → ( ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) < 1 ) ) |
58 |
54 56 35 36 57
|
syl22anc |
⊢ ( 𝜑 → ( ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 1 ( abs ∘ − ) ( 1 + 𝑇 ) ) < 1 ) ) |
59 |
52 58
|
mpbird |
⊢ ( 𝜑 → ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
60 |
|
eqid |
⊢ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) = ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) |
61 |
60
|
logtayl2 |
⊢ ( ( 1 + 𝑇 ) ∈ ( 1 ( ball ‘ ( abs ∘ − ) ) 1 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) ⇝ ( log ‘ ( 1 + 𝑇 ) ) ) |
62 |
59 61
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) / 𝑗 ) · ( ( ( 1 + 𝑇 ) − 1 ) ↑ 𝑗 ) ) ) ) ⇝ ( log ‘ ( 1 + 𝑇 ) ) ) |
63 |
34 62
|
eqbrtrd |
⊢ ( 𝜑 → seq 1 ( + , 𝐷 ) ⇝ ( log ‘ ( 1 + 𝑇 ) ) ) |
64 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
65 |
64
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
66 |
2
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) |
67 |
66
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , 𝐸 ) = seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ) |
68 |
|
logtayl |
⊢ ( ( 𝑇 ∈ ℂ ∧ ( abs ‘ 𝑇 ) < 1 ) → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ⇝ - ( log ‘ ( 1 − 𝑇 ) ) ) |
69 |
19 7 68
|
syl2anc |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑗 ∈ ℕ ↦ ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ⇝ - ( log ‘ ( 1 − 𝑇 ) ) ) |
70 |
67 69
|
eqbrtrd |
⊢ ( 𝜑 → seq 1 ( + , 𝐸 ) ⇝ - ( log ‘ ( 1 − 𝑇 ) ) ) |
71 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
72 |
71 8
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
73 |
|
oveq1 |
⊢ ( 𝑗 = 𝑛 → ( 𝑗 − 1 ) = ( 𝑛 − 1 ) ) |
74 |
73
|
oveq2d |
⊢ ( 𝑗 = 𝑛 → ( - 1 ↑ ( 𝑗 − 1 ) ) = ( - 1 ↑ ( 𝑛 − 1 ) ) ) |
75 |
|
oveq2 |
⊢ ( 𝑗 = 𝑛 → ( 𝑇 ↑ 𝑗 ) = ( 𝑇 ↑ 𝑛 ) ) |
76 |
|
id |
⊢ ( 𝑗 = 𝑛 → 𝑗 = 𝑛 ) |
77 |
75 76
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) = ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
78 |
74 77
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
79 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) |
80 |
79
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
81 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
82 |
81
|
negcld |
⊢ ( 𝑛 ∈ ℕ → - 1 ∈ ℂ ) |
83 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
84 |
82 83
|
expcld |
⊢ ( 𝑛 ∈ ℕ → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
85 |
80 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
86 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑇 ∈ ℂ ) |
87 |
80
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ0 ) |
88 |
86 87
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
89 |
80
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℂ ) |
90 |
80
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ≠ 0 ) |
91 |
88 89 90
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
92 |
85 91
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
93 |
1 78 80 92
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐷 ‘ 𝑛 ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
94 |
93 92
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
95 |
|
addcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) |
96 |
95
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) |
97 |
72 94 96
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐷 ) ‘ 𝑘 ) ∈ ℂ ) |
98 |
2 77 80 91
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐸 ‘ 𝑛 ) = ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
99 |
98 91
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐸 ‘ 𝑛 ) ∈ ℂ ) |
100 |
72 99 96
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐸 ) ‘ 𝑘 ) ∈ ℂ ) |
101 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝜑 ) |
102 |
78 77
|
oveq12d |
⊢ ( 𝑗 = 𝑛 → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
103 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
104 |
84
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
105 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑇 ∈ ℂ ) |
106 |
103
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
107 |
105 106
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
108 |
103
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
109 |
103
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
110 |
107 108 109
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
111 |
104 110
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
112 |
111 110
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
113 |
3 102 103 112
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
114 |
1 78 103 111
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
115 |
114
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( 𝐷 ‘ 𝑛 ) ) |
116 |
2 77 103 110
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐸 ‘ 𝑛 ) = ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
117 |
116
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) = ( 𝐸 ‘ 𝑛 ) ) |
118 |
115 117
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( ( 𝐷 ‘ 𝑛 ) + ( 𝐸 ‘ 𝑛 ) ) ) |
119 |
113 118
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) + ( 𝐸 ‘ 𝑛 ) ) ) |
120 |
101 80 119
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) + ( 𝐸 ‘ 𝑛 ) ) ) |
121 |
72 94 99 120
|
seradd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) = ( ( seq 1 ( + , 𝐷 ) ‘ 𝑘 ) + ( seq 1 ( + , 𝐸 ) ‘ 𝑘 ) ) ) |
122 |
8 9 63 65 70 97 100 121
|
climadd |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) + - ( log ‘ ( 1 − 𝑇 ) ) ) ) |
123 |
|
1rp |
⊢ 1 ∈ ℝ+ |
124 |
123
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
125 |
124 6
|
rpaddcld |
⊢ ( 𝜑 → ( 1 + 𝑇 ) ∈ ℝ+ ) |
126 |
125
|
rpne0d |
⊢ ( 𝜑 → ( 1 + 𝑇 ) ≠ 0 ) |
127 |
36 126
|
logcld |
⊢ ( 𝜑 → ( log ‘ ( 1 + 𝑇 ) ) ∈ ℂ ) |
128 |
35 19
|
subcld |
⊢ ( 𝜑 → ( 1 − 𝑇 ) ∈ ℂ ) |
129 |
18 55
|
absltd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑇 ) < 1 ↔ ( - 1 < 𝑇 ∧ 𝑇 < 1 ) ) ) |
130 |
7 129
|
mpbid |
⊢ ( 𝜑 → ( - 1 < 𝑇 ∧ 𝑇 < 1 ) ) |
131 |
130
|
simprd |
⊢ ( 𝜑 → 𝑇 < 1 ) |
132 |
18 131
|
gtned |
⊢ ( 𝜑 → 1 ≠ 𝑇 ) |
133 |
35 19 132
|
subne0d |
⊢ ( 𝜑 → ( 1 − 𝑇 ) ≠ 0 ) |
134 |
128 133
|
logcld |
⊢ ( 𝜑 → ( log ‘ ( 1 − 𝑇 ) ) ∈ ℂ ) |
135 |
127 134
|
negsubd |
⊢ ( 𝜑 → ( ( log ‘ ( 1 + 𝑇 ) ) + - ( log ‘ ( 1 − 𝑇 ) ) ) = ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
136 |
122 135
|
breqtrd |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
137 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
138 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
139 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
140 |
139
|
a1i |
⊢ ( 𝑗 ∈ ℕ0 → 2 ∈ ℕ0 ) |
141 |
|
id |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℕ0 ) |
142 |
140 141
|
nn0mulcld |
⊢ ( 𝑗 ∈ ℕ0 → ( 2 · 𝑗 ) ∈ ℕ0 ) |
143 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑗 ) ∈ ℕ0 → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
144 |
142 143
|
syl |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
145 |
5 144
|
fmpti |
⊢ 𝐺 : ℕ0 ⟶ ℕ |
146 |
145
|
a1i |
⊢ ( 𝜑 → 𝐺 : ℕ0 ⟶ ℕ ) |
147 |
|
2re |
⊢ 2 ∈ ℝ |
148 |
147
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℝ ) |
149 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
150 |
148 149
|
remulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℝ ) |
151 |
|
1red |
⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℝ ) |
152 |
149 151
|
readdcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℝ ) |
153 |
148 152
|
remulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 𝑘 + 1 ) ) ∈ ℝ ) |
154 |
|
2rp |
⊢ 2 ∈ ℝ+ |
155 |
154
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℝ+ ) |
156 |
149
|
ltp1d |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 < ( 𝑘 + 1 ) ) |
157 |
149 152 155 156
|
ltmul2dd |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) < ( 2 · ( 𝑘 + 1 ) ) ) |
158 |
150 153 151 157
|
ltadd1dd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) < ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
159 |
5
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 𝐺 = ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) ) |
160 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
161 |
160
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = 𝑘 ) → ( 2 · 𝑗 ) = ( 2 · 𝑘 ) ) |
162 |
161
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = 𝑘 ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
163 |
|
id |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0 ) |
164 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℂ ) |
165 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
166 |
164 165
|
mulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℂ ) |
167 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℂ ) |
168 |
166 167
|
addcld |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
169 |
159 162 163 168
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
170 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = ( 𝑘 + 1 ) ) → 𝑗 = ( 𝑘 + 1 ) ) |
171 |
170
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = ( 𝑘 + 1 ) ) → ( 2 · 𝑗 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
172 |
171
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 = ( 𝑘 + 1 ) ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
173 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
174 |
165 167
|
addcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
175 |
164 174
|
mulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 𝑘 + 1 ) ) ∈ ℂ ) |
176 |
175 167
|
addcld |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ∈ ℂ ) |
177 |
159 172 173 176
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ ( 𝑘 + 1 ) ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
178 |
158 169 177
|
3brtr4d |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
179 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
180 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 𝑛 ∈ ℕ ) |
181 |
180
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ∈ ℕ ) |
182 |
|
1cnd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 1 ∈ ℂ ) |
183 |
182
|
negcld |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → - 1 ∈ ℂ ) |
184 |
180 83
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
185 |
183 184
|
expcld |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
186 |
185
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) ∈ ℂ ) |
187 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑇 ∈ ℂ ) |
188 |
181
|
nnnn0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ∈ ℕ0 ) |
189 |
187 188
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( 𝑇 ↑ 𝑛 ) ∈ ℂ ) |
190 |
181
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ∈ ℂ ) |
191 |
181
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → 𝑛 ≠ 0 ) |
192 |
189 190 191
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
193 |
186 192
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
194 |
193 192
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ∈ ℂ ) |
195 |
3 102 181 194
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
196 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ 𝑛 ∈ ran 𝐺 ) |
197 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
198 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
199 |
139 198
|
num0h |
⊢ 1 = ( ( 2 · 0 ) + 1 ) |
200 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 2 · 𝑗 ) = ( 2 · 0 ) ) |
201 |
200
|
oveq1d |
⊢ ( 𝑗 = 0 → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 0 ) + 1 ) ) |
202 |
201
|
eqeq2d |
⊢ ( 𝑗 = 0 → ( 1 = ( ( 2 · 𝑗 ) + 1 ) ↔ 1 = ( ( 2 · 0 ) + 1 ) ) ) |
203 |
202
|
rspcev |
⊢ ( ( 0 ∈ ℕ0 ∧ 1 = ( ( 2 · 0 ) + 1 ) ) → ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) ) |
204 |
197 199 203
|
mp2an |
⊢ ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) |
205 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
206 |
5
|
elrnmpt |
⊢ ( 1 ∈ ℂ → ( 1 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) ) ) |
207 |
205 206
|
ax-mp |
⊢ ( 1 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ ℕ0 1 = ( ( 2 · 𝑗 ) + 1 ) ) |
208 |
204 207
|
mpbir |
⊢ 1 ∈ ran 𝐺 |
209 |
208
|
a1i |
⊢ ( 𝑛 = 1 → 1 ∈ ran 𝐺 ) |
210 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ran 𝐺 ↔ 1 ∈ ran 𝐺 ) ) |
211 |
209 210
|
mpbird |
⊢ ( 𝑛 = 1 → 𝑛 ∈ ran 𝐺 ) |
212 |
196 211
|
nsyl |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ 𝑛 = 1 ) |
213 |
|
nn1m1nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ℕ ) ) |
214 |
180 213
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 = 1 ∨ ( 𝑛 − 1 ) ∈ ℕ ) ) |
215 |
214
|
ord |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ¬ 𝑛 = 1 → ( 𝑛 − 1 ) ∈ ℕ ) ) |
216 |
212 215
|
mpd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 − 1 ) ∈ ℕ ) |
217 |
|
nfcv |
⊢ Ⅎ 𝑗 ℕ |
218 |
|
nfmpt1 |
⊢ Ⅎ 𝑗 ( 𝑗 ∈ ℕ0 ↦ ( ( 2 · 𝑗 ) + 1 ) ) |
219 |
5 218
|
nfcxfr |
⊢ Ⅎ 𝑗 𝐺 |
220 |
219
|
nfrn |
⊢ Ⅎ 𝑗 ran 𝐺 |
221 |
217 220
|
nfdif |
⊢ Ⅎ 𝑗 ( ℕ ∖ ran 𝐺 ) |
222 |
221
|
nfcri |
⊢ Ⅎ 𝑗 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) |
223 |
5
|
elrnmpt |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 ∈ ran 𝐺 ↔ ∃ 𝑗 ∈ ℕ0 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) ) |
224 |
196 223
|
mtbid |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ ∃ 𝑗 ∈ ℕ0 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
225 |
|
ralnex |
⊢ ( ∀ 𝑗 ∈ ℕ0 ¬ 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ↔ ¬ ∃ 𝑗 ∈ ℕ0 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
226 |
224 225
|
sylibr |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ∀ 𝑗 ∈ ℕ0 ¬ 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
227 |
226
|
r19.21bi |
⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℕ0 ) → ¬ 𝑛 = ( ( 2 · 𝑗 ) + 1 ) ) |
228 |
227
|
neqned |
⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℕ0 ) → 𝑛 ≠ ( ( 2 · 𝑗 ) + 1 ) ) |
229 |
228
|
necomd |
⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
230 |
229
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
231 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℤ ) |
232 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 𝑗 ∈ ℕ0 ) |
233 |
180
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑛 ∈ ℕ ) |
234 |
147
|
a1i |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 2 ∈ ℝ ) |
235 |
|
simpl |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℤ ) |
236 |
235
|
zred |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℝ ) |
237 |
234 236
|
remulcld |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) ∈ ℝ ) |
238 |
|
0red |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 0 ∈ ℝ ) |
239 |
|
1red |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 1 ∈ ℝ ) |
240 |
|
2cnd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 2 ∈ ℂ ) |
241 |
236
|
recnd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℂ ) |
242 |
240 241
|
mulcomd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) = ( 𝑗 · 2 ) ) |
243 |
|
simpr |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 𝑗 ∈ ℕ0 ) |
244 |
|
elnn0z |
⊢ ( 𝑗 ∈ ℕ0 ↔ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
245 |
243 244
|
sylnib |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) |
246 |
|
nan |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ ( 𝑗 ∈ ℤ ∧ 0 ≤ 𝑗 ) ) ↔ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑗 ∈ ℤ ) → ¬ 0 ≤ 𝑗 ) ) |
247 |
245 246
|
mpbi |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑗 ∈ ℤ ) → ¬ 0 ≤ 𝑗 ) |
248 |
247
|
anabss1 |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 0 ≤ 𝑗 ) |
249 |
236 238
|
ltnled |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 𝑗 < 0 ↔ ¬ 0 ≤ 𝑗 ) ) |
250 |
248 249
|
mpbird |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 𝑗 < 0 ) |
251 |
154
|
a1i |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 2 ∈ ℝ+ ) |
252 |
251
|
rpregt0d |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
253 |
|
mulltgt0 |
⊢ ( ( ( 𝑗 ∈ ℝ ∧ 𝑗 < 0 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝑗 · 2 ) < 0 ) |
254 |
236 250 252 253
|
syl21anc |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 𝑗 · 2 ) < 0 ) |
255 |
242 254
|
eqbrtrd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) < 0 ) |
256 |
237 238 239 255
|
ltadd1dd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) < ( 0 + 1 ) ) |
257 |
|
1cnd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) |
258 |
257
|
addid2d |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( 0 + 1 ) = 1 ) |
259 |
256 258
|
breqtrd |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) < 1 ) |
260 |
237 239
|
readdcld |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℝ ) |
261 |
260 239
|
ltnled |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( ( 2 · 𝑗 ) + 1 ) < 1 ↔ ¬ 1 ≤ ( ( 2 · 𝑗 ) + 1 ) ) ) |
262 |
259 261
|
mpbid |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ 1 ≤ ( ( 2 · 𝑗 ) + 1 ) ) |
263 |
|
nnge1 |
⊢ ( ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ → 1 ≤ ( ( 2 · 𝑗 ) + 1 ) ) |
264 |
262 263
|
nsyl |
⊢ ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) → ¬ ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
265 |
264
|
adantr |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
266 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
267 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → 𝑛 ∈ ℕ ) |
268 |
266 267
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
269 |
268
|
adantll |
⊢ ( ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ ) |
270 |
265 269
|
mtand |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
271 |
270
|
neqned |
⊢ ( ( ( 𝑗 ∈ ℤ ∧ ¬ 𝑗 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
272 |
231 232 233 271
|
syl21anc |
⊢ ( ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) ∧ ¬ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
273 |
230 272
|
pm2.61dan |
⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 𝑛 ) |
274 |
273
|
neneqd |
⊢ ( ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ∧ 𝑗 ∈ ℤ ) → ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
275 |
274
|
ex |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑗 ∈ ℤ → ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) ) |
276 |
222 275
|
ralrimi |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ∀ 𝑗 ∈ ℤ ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
277 |
|
ralnex |
⊢ ( ∀ 𝑗 ∈ ℤ ¬ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ↔ ¬ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
278 |
276 277
|
sylib |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) |
279 |
180
|
nnzd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 𝑛 ∈ ℤ ) |
280 |
|
odd2np1 |
⊢ ( 𝑛 ∈ ℤ → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) ) |
281 |
279 280
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ¬ 2 ∥ 𝑛 ↔ ∃ 𝑗 ∈ ℤ ( ( 2 · 𝑗 ) + 1 ) = 𝑛 ) ) |
282 |
278 281
|
mtbird |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ ¬ 2 ∥ 𝑛 ) |
283 |
282
|
notnotrd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 2 ∥ 𝑛 ) |
284 |
180
|
nncnd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 𝑛 ∈ ℂ ) |
285 |
284 182
|
npcand |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
286 |
283 285
|
breqtrrd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → 2 ∥ ( ( 𝑛 − 1 ) + 1 ) ) |
287 |
184
|
nn0zd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 𝑛 − 1 ) ∈ ℤ ) |
288 |
|
oddp1even |
⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( ¬ 2 ∥ ( 𝑛 − 1 ) ↔ 2 ∥ ( ( 𝑛 − 1 ) + 1 ) ) ) |
289 |
287 288
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( ¬ 2 ∥ ( 𝑛 − 1 ) ↔ 2 ∥ ( ( 𝑛 − 1 ) + 1 ) ) ) |
290 |
286 289
|
mpbird |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ¬ 2 ∥ ( 𝑛 − 1 ) ) |
291 |
|
oexpneg |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝑛 − 1 ) ∈ ℕ ∧ ¬ 2 ∥ ( 𝑛 − 1 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - ( 1 ↑ ( 𝑛 − 1 ) ) ) |
292 |
182 216 290 291
|
syl3anc |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - ( 1 ↑ ( 𝑛 − 1 ) ) ) |
293 |
|
1exp |
⊢ ( ( 𝑛 − 1 ) ∈ ℤ → ( 1 ↑ ( 𝑛 − 1 ) ) = 1 ) |
294 |
287 293
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( 1 ↑ ( 𝑛 − 1 ) ) = 1 ) |
295 |
294
|
negeqd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → - ( 1 ↑ ( 𝑛 − 1 ) ) = - 1 ) |
296 |
292 295
|
eqtrd |
⊢ ( 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - 1 ) |
297 |
296
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - 1 ↑ ( 𝑛 − 1 ) ) = - 1 ) |
298 |
297
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
299 |
298
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( ( - 1 ↑ ( 𝑛 − 1 ) ) · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
300 |
192
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) |
301 |
300
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
302 |
192
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
303 |
302 192
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = ( ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) ) |
304 |
192
|
negidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) + - ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = 0 ) |
305 |
301 303 304
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( ( - 1 · ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) + ( ( 𝑇 ↑ 𝑛 ) / 𝑛 ) ) = 0 ) |
306 |
195 299 305
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
307 |
113 112
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
308 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐹 = ( 𝑗 ∈ ℕ ↦ ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) ) ) |
309 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) |
310 |
309
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( 𝑗 − 1 ) = ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) |
311 |
310
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( - 1 ↑ ( 𝑗 − 1 ) ) = ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) ) |
312 |
309
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( 𝑇 ↑ 𝑗 ) = ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
313 |
312 309
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) = ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
314 |
311 313
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
315 |
314 313
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = ( ( 2 · 𝑘 ) + 1 ) ) → ( ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) + ( ( 𝑇 ↑ 𝑗 ) / 𝑗 ) ) = ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
316 |
139
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
317 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
318 |
316 317
|
nn0mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
319 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
320 |
318 319
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
321 |
167
|
negcld |
⊢ ( 𝑘 ∈ ℕ0 → - 1 ∈ ℂ ) |
322 |
166 167
|
pncand |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
323 |
139
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℕ0 ) |
324 |
323 163
|
nn0mulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℕ0 ) |
325 |
322 324
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ∈ ℕ0 ) |
326 |
321 325
|
expcld |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) ∈ ℂ ) |
327 |
326
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) ∈ ℂ ) |
328 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑇 ∈ ℂ ) |
329 |
198
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
330 |
318 329
|
nn0addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
331 |
328 330
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
332 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℂ ) |
333 |
165
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
334 |
332 333
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℂ ) |
335 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) |
336 |
334 335
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
337 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ∈ ℝ ) |
338 |
147
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 2 ∈ ℝ ) |
339 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
340 |
338 339
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℝ ) |
341 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) |
342 |
|
0le2 |
⊢ 0 ≤ 2 |
343 |
342
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 2 ) |
344 |
317
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 𝑘 ) |
345 |
338 339 343 344
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ ( 2 · 𝑘 ) ) |
346 |
|
0lt1 |
⊢ 0 < 1 |
347 |
346
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 < 1 ) |
348 |
340 341 345 347
|
addgegt0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ( 2 · 𝑘 ) + 1 ) ) |
349 |
337 348
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
350 |
331 336 349
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
351 |
327 350
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
352 |
351 350
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
353 |
308 315 320 352
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
354 |
322
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) = ( 2 · 𝑘 ) ) |
355 |
354
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) = ( - 1 ↑ ( 2 · 𝑘 ) ) ) |
356 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
357 |
|
m1expeven |
⊢ ( 𝑘 ∈ ℤ → ( - 1 ↑ ( 2 · 𝑘 ) ) = 1 ) |
358 |
356 357
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = 1 ) |
359 |
358
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝑘 ) ) = 1 ) |
360 |
355 359
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) = 1 ) |
361 |
360
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 1 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
362 |
350
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
363 |
361 362
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
364 |
363
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
365 |
350
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
366 |
331 336 349
|
divrec2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
367 |
366
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
368 |
364 365 367
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( - 1 ↑ ( ( ( 2 · 𝑘 ) + 1 ) − 1 ) ) · ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) + ( ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
369 |
353 368
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
370 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐻 = ( 𝑗 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) ) |
371 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → 𝑗 = 𝑘 ) |
372 |
371
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 2 · 𝑗 ) = ( 2 · 𝑘 ) ) |
373 |
372
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( ( 2 · 𝑗 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
374 |
373
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ) |
375 |
373
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) = ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
376 |
374 375
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
377 |
376
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 = 𝑘 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
378 |
336 349
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
379 |
378 331
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
380 |
332 379
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ∈ ℂ ) |
381 |
370 377 317 380
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( 𝑇 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
382 |
198
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℕ0 ) |
383 |
324 382
|
nn0addcld |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
384 |
159 162 163 383
|
fvmptd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
385 |
384
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
386 |
385
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
387 |
369 381 386
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
388 |
137 8 138 9 146 179 306 307 387
|
isercoll2 |
⊢ ( 𝜑 → ( seq 0 ( + , 𝐻 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ↔ seq 1 ( + , 𝐹 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) ) |
389 |
136 388
|
mpbird |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
390 |
55 18
|
resubcld |
⊢ ( 𝜑 → ( 1 − 𝑇 ) ∈ ℝ ) |
391 |
19
|
subidd |
⊢ ( 𝜑 → ( 𝑇 − 𝑇 ) = 0 ) |
392 |
391
|
eqcomd |
⊢ ( 𝜑 → 0 = ( 𝑇 − 𝑇 ) ) |
393 |
18 55 18 131
|
ltsub1dd |
⊢ ( 𝜑 → ( 𝑇 − 𝑇 ) < ( 1 − 𝑇 ) ) |
394 |
392 393
|
eqbrtrd |
⊢ ( 𝜑 → 0 < ( 1 − 𝑇 ) ) |
395 |
390 394
|
elrpd |
⊢ ( 𝜑 → ( 1 − 𝑇 ) ∈ ℝ+ ) |
396 |
125 395
|
relogdivd |
⊢ ( 𝜑 → ( log ‘ ( ( 1 + 𝑇 ) / ( 1 − 𝑇 ) ) ) = ( ( log ‘ ( 1 + 𝑇 ) ) − ( log ‘ ( 1 − 𝑇 ) ) ) ) |
397 |
389 396
|
breqtrrd |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( log ‘ ( ( 1 + 𝑇 ) / ( 1 − 𝑇 ) ) ) ) |