Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem7.1 |
⊢ 𝐽 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) ) |
2 |
|
stirlinglem7.2 |
⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) ) |
3 |
|
stirlinglem7.3 |
⊢ 𝐻 = ( 𝑘 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
|
1zzd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) |
6 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 = ( 0 + 1 ) ) |
8 |
7
|
seqeq1d |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐻 ) = seq ( 0 + 1 ) ( + , 𝐻 ) ) |
9 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
10 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
11 |
10
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℕ0 ) |
12 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 2 · 𝑘 ) = ( 2 · 𝑗 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑗 ) + 1 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ) |
15 |
13
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) |
16 |
14 15
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) |
18 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
19 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 2 ∈ ℂ ) |
20 |
|
2cnd |
⊢ ( 𝑗 ∈ ℕ0 → 2 ∈ ℂ ) |
21 |
|
nn0cn |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) |
22 |
20 21
|
mulcld |
⊢ ( 𝑗 ∈ ℕ0 → ( 2 · 𝑗 ) ∈ ℂ ) |
23 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ0 → 1 ∈ ℂ ) |
24 |
22 23
|
addcld |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 2 · 𝑗 ) + 1 ) ∈ ℂ ) |
25 |
24
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℂ ) |
26 |
|
0red |
⊢ ( 𝑗 ∈ ℕ0 → 0 ∈ ℝ ) |
27 |
|
2re |
⊢ 2 ∈ ℝ |
28 |
27
|
a1i |
⊢ ( 𝑗 ∈ ℕ0 → 2 ∈ ℝ ) |
29 |
|
nn0re |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℝ ) |
30 |
28 29
|
remulcld |
⊢ ( 𝑗 ∈ ℕ0 → ( 2 · 𝑗 ) ∈ ℝ ) |
31 |
|
1red |
⊢ ( 𝑗 ∈ ℕ0 → 1 ∈ ℝ ) |
32 |
|
0le2 |
⊢ 0 ≤ 2 |
33 |
32
|
a1i |
⊢ ( 𝑗 ∈ ℕ0 → 0 ≤ 2 ) |
34 |
|
nn0ge0 |
⊢ ( 𝑗 ∈ ℕ0 → 0 ≤ 𝑗 ) |
35 |
28 29 33 34
|
mulge0d |
⊢ ( 𝑗 ∈ ℕ0 → 0 ≤ ( 2 · 𝑗 ) ) |
36 |
|
0lt1 |
⊢ 0 < 1 |
37 |
36
|
a1i |
⊢ ( 𝑗 ∈ ℕ0 → 0 < 1 ) |
38 |
30 31 35 37
|
addgegt0d |
⊢ ( 𝑗 ∈ ℕ0 → 0 < ( ( 2 · 𝑗 ) + 1 ) ) |
39 |
26 38
|
ltned |
⊢ ( 𝑗 ∈ ℕ0 → 0 ≠ ( ( 2 · 𝑗 ) + 1 ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 0 ≠ ( ( 2 · 𝑗 ) + 1 ) ) |
41 |
40
|
necomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ≠ 0 ) |
42 |
25 41
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℂ ) |
43 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
44 |
43
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
45 |
19 44
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑁 ) ∈ ℂ ) |
46 |
|
1cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) |
47 |
45 46
|
addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
48 |
27
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
49 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
50 |
48 49
|
remulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℝ ) |
51 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
52 |
32
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 2 ) |
53 |
|
0red |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
54 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
55 |
53 49 54
|
ltled |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
56 |
48 49 52 55
|
mulge0d |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 2 · 𝑁 ) ) |
57 |
36
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
58 |
50 51 56 57
|
addgegt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 𝑁 ) + 1 ) ) |
59 |
58
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
60 |
59
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
61 |
47 60
|
reccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
62 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
63 |
62
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
64 |
63 18
|
nn0mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 · 𝑗 ) ∈ ℕ0 ) |
65 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
66 |
65
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℕ0 ) |
67 |
64 66
|
nn0addcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 2 · 𝑗 ) + 1 ) ∈ ℕ0 ) |
68 |
61 67
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ∈ ℂ ) |
69 |
42 68
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ∈ ℂ ) |
70 |
19 69
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ∈ ℂ ) |
71 |
3 17 18 70
|
fvmptd3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) = ( 2 · ( ( 1 / ( ( 2 · 𝑗 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) ) ) |
72 |
71 70
|
eqeltrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) ∈ ℂ ) |
73 |
3
|
stirlinglem6 |
⊢ ( 𝑁 ∈ ℕ → seq 0 ( + , 𝐻 ) ⇝ ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
74 |
9 11 72 73
|
clim2ser |
⊢ ( 𝑁 ∈ ℕ → seq ( 0 + 1 ) ( + , 𝐻 ) ⇝ ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( seq 0 ( + , 𝐻 ) ‘ 0 ) ) ) |
75 |
8 74
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐻 ) ⇝ ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( seq 0 ( + , 𝐻 ) ‘ 0 ) ) ) |
76 |
|
0z |
⊢ 0 ∈ ℤ |
77 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( + , 𝐻 ) ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
78 |
76 77
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → ( seq 0 ( + , 𝐻 ) ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
79 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 𝐻 = ( 𝑘 ∈ ℕ0 ↦ ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) ) |
80 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → 𝑘 = 0 ) |
81 |
80
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( 2 · 𝑘 ) = ( 2 · 0 ) ) |
82 |
81
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 0 ) + 1 ) ) |
83 |
82
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 0 ) + 1 ) ) ) |
84 |
82
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) |
85 |
83 84
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) |
86 |
85
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 = 0 ) → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) ) |
87 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
88 |
|
0cnd |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℂ ) |
89 |
87 88
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 0 ) ∈ ℂ ) |
90 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
91 |
89 90
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) ∈ ℂ ) |
92 |
87
|
mul01d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 0 ) = 0 ) |
93 |
92
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → 0 = ( 2 · 0 ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( 0 + 1 ) = ( ( 2 · 0 ) + 1 ) ) |
95 |
7 94
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → 1 = ( ( 2 · 0 ) + 1 ) ) |
96 |
57 95
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 2 · 0 ) + 1 ) ) |
97 |
96
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) ≠ 0 ) |
98 |
91 97
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 0 ) + 1 ) ) ∈ ℂ ) |
99 |
87 43
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 𝑁 ) ∈ ℂ ) |
100 |
99 90
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
101 |
100 59
|
reccld |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
102 |
95 65
|
eqeltrrdi |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) ∈ ℕ0 ) |
103 |
101 102
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ∈ ℂ ) |
104 |
98 103
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ∈ ℂ ) |
105 |
87 104
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) ∈ ℂ ) |
106 |
79 86 11 105
|
fvmptd |
⊢ ( 𝑁 ∈ ℕ → ( 𝐻 ‘ 0 ) = ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) ) |
107 |
92
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) = ( 0 + 1 ) ) |
108 |
107 6
|
eqtr4di |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 0 ) + 1 ) = 1 ) |
109 |
108
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 0 ) + 1 ) ) = ( 1 / 1 ) ) |
110 |
90
|
div1d |
⊢ ( 𝑁 ∈ ℕ → ( 1 / 1 ) = 1 ) |
111 |
109 110
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 1 / ( ( 2 · 0 ) + 1 ) ) = 1 ) |
112 |
108
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ 1 ) ) |
113 |
101
|
exp1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ 1 ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
114 |
112 113
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
115 |
111 114
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) = ( 1 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
116 |
101
|
mulid2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
117 |
115 116
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) = ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
118 |
117
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) = ( 2 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
119 |
87 90 100 59
|
divassd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = ( 2 · ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
120 |
87
|
mulid1d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · 1 ) = 2 ) |
121 |
120
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
122 |
118 119 121
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ → ( 2 · ( ( 1 / ( ( 2 · 0 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 0 ) + 1 ) ) ) ) = ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
123 |
78 106 122
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( seq 0 ( + , 𝐻 ) ‘ 0 ) = ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) |
124 |
123
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( seq 0 ( + , 𝐻 ) ‘ 0 ) ) = ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
125 |
75 124
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐻 ) ⇝ ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
126 |
90 99
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
127 |
126
|
halfcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ∈ ℂ ) |
128 |
|
seqex |
⊢ seq 1 ( + , 𝐾 ) ∈ V |
129 |
128
|
a1i |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ∈ V ) |
130 |
|
elnnuz |
⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
131 |
130
|
biimpi |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
132 |
131
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
133 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 · 𝑘 ) = ( 2 · 𝑛 ) ) |
134 |
133
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
135 |
134
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) = ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ) |
136 |
134
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
137 |
135 136
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
138 |
137
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 2 · ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
139 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
140 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
141 |
140
|
biimpri |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → 𝑛 ∈ ℕ ) |
142 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
143 |
139 141 142
|
3syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ0 ) |
144 |
143
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ0 ) |
145 |
|
2cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℂ ) |
146 |
144
|
nn0cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℂ ) |
147 |
145 146
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℂ ) |
148 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℂ ) |
149 |
147 148
|
addcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
150 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) |
151 |
|
0red |
⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
152 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
153 |
27
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
154 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
155 |
153 154
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
156 |
155 152
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ∈ ℝ ) |
157 |
36
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 < 1 ) |
158 |
|
2rp |
⊢ 2 ∈ ℝ+ |
159 |
158
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
160 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
161 |
159 160
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ+ ) |
162 |
152 161
|
ltaddrp2d |
⊢ ( 𝑛 ∈ ℕ → 1 < ( ( 2 · 𝑛 ) + 1 ) ) |
163 |
151 152 156 157 162
|
lttrd |
⊢ ( 𝑛 ∈ ℕ → 0 < ( ( 2 · 𝑛 ) + 1 ) ) |
164 |
163
|
gt0ne0d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
165 |
150 164
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
166 |
165
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
167 |
149 166
|
reccld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
168 |
101
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
169 |
62
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℕ0 ) |
170 |
169 144
|
nn0mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
171 |
65
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 1 ∈ ℕ0 ) |
172 |
170 171
|
nn0addcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
173 |
168 172
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
174 |
167 173
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
175 |
145 174
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ∈ ℂ ) |
176 |
3 138 144 175
|
fvmptd3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐻 ‘ 𝑛 ) = ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
177 |
176 175
|
eqeltrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐻 ‘ 𝑛 ) ∈ ℂ ) |
178 |
|
addcl |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) |
179 |
178
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 𝑛 + 𝑖 ) ∈ ℂ ) |
180 |
132 177 179
|
seqcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑗 ) ∈ ℂ ) |
181 |
|
1cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 1 ∈ ℂ ) |
182 |
|
2cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 2 ∈ ℂ ) |
183 |
43
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 𝑁 ∈ ℂ ) |
184 |
182 183
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
185 |
181 184
|
addcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
186 |
185
|
halfcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ∈ ℂ ) |
187 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 𝑛 ∈ ℂ ) |
188 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → 𝑖 ∈ ℂ ) |
189 |
186 187 188
|
adddid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑖 ∈ ℂ ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 𝑛 + 𝑖 ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · 𝑛 ) + ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · 𝑖 ) ) ) |
190 |
133
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
191 |
135 190
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 1 / ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑘 ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
192 |
150
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
193 |
168 170
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
194 |
167 193
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ∈ ℂ ) |
195 |
2 191 192 194
|
fvmptd3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
196 |
126
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 + ( 2 · 𝑁 ) ) ∈ ℂ ) |
197 |
|
2ne0 |
⊢ 2 ≠ 0 |
198 |
197
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ≠ 0 ) |
199 |
196 145 175 198
|
div32d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) / 2 ) ) ) |
200 |
174 145 198
|
divcan3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) / 2 ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
201 |
200
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) / 2 ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
202 |
196 167 173
|
mul12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
203 |
100
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ∈ ℂ ) |
204 |
59
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑁 ) + 1 ) ≠ 0 ) |
205 |
172
|
nn0zd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ) |
206 |
203 204 205
|
exprecd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
207 |
206
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
208 |
203 172
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
209 |
203 204 205
|
expne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ≠ 0 ) |
210 |
196 208 209
|
divrecd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) · ( 1 / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
211 |
43
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑁 ∈ ℂ ) |
212 |
145 211
|
mulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑁 ) ∈ ℂ ) |
213 |
148 212
|
addcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 + ( 2 · 𝑁 ) ) = ( ( 2 · 𝑁 ) + 1 ) ) |
214 |
203 170
|
expcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ∈ ℂ ) |
215 |
214 203
|
mulcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) = ( ( ( 2 · 𝑁 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
216 |
213 215
|
oveq12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
217 |
203 170
|
expp1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) ) |
218 |
217
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) · ( ( 2 · 𝑁 ) + 1 ) ) ) ) |
219 |
|
2z |
⊢ 2 ∈ ℤ |
220 |
219
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 2 ∈ ℤ ) |
221 |
144
|
nn0zd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℤ ) |
222 |
220 221
|
zmulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · 𝑛 ) ∈ ℤ ) |
223 |
203 204 222
|
expne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ≠ 0 ) |
224 |
203 203 214 204 223
|
divdiv1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( ( 2 · 𝑁 ) + 1 ) / ( ( ( 2 · 𝑁 ) + 1 ) · ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
225 |
216 218 224
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
226 |
207 210 225
|
3eqtr2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
227 |
226
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) ) |
228 |
203 204
|
dividd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = 1 ) |
229 |
|
1exp |
⊢ ( ( 2 · 𝑛 ) ∈ ℤ → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
230 |
222 229
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 1 ↑ ( 2 · 𝑛 ) ) = 1 ) |
231 |
228 230
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) = ( 1 ↑ ( 2 · 𝑛 ) ) ) |
232 |
231
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
233 |
148 203 204 170
|
expdivd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) = ( ( 1 ↑ ( 2 · 𝑛 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) |
234 |
232 233
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) = ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) |
235 |
234
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( ( ( 2 · 𝑁 ) + 1 ) / ( ( 2 · 𝑁 ) + 1 ) ) / ( ( ( 2 · 𝑁 ) + 1 ) ↑ ( 2 · 𝑛 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
236 |
202 227 235
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( 1 + ( 2 · 𝑁 ) ) · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
237 |
199 201 236
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) = ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( 2 · 𝑛 ) ) ) ) |
238 |
176
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝐻 ‘ 𝑛 ) ) |
239 |
238
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 2 · ( ( 1 / ( ( 2 · 𝑛 ) + 1 ) ) · ( ( 1 / ( ( 2 · 𝑁 ) + 1 ) ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
240 |
195 237 239
|
3eqtr2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐾 ‘ 𝑛 ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( 𝐻 ‘ 𝑛 ) ) ) |
241 |
179 189 132 177 240
|
seqdistr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐾 ) ‘ 𝑗 ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( seq 1 ( + , 𝐻 ) ‘ 𝑗 ) ) ) |
242 |
4 5 125 127 129 180 241
|
climmulc2 |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) ) |
243 |
90 99
|
addcomd |
⊢ ( 𝑁 ∈ ℕ → ( 1 + ( 2 · 𝑁 ) ) = ( ( 2 · 𝑁 ) + 1 ) ) |
244 |
243
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) = ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) ) |
245 |
244
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) ) |
246 |
244 127
|
eqeltrrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) ∈ ℂ ) |
247 |
43 90
|
addcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℂ ) |
248 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
249 |
247 43 248
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ∈ ℂ ) |
250 |
49 51
|
readdcld |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
251 |
49
|
ltp1d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 < ( 𝑁 + 1 ) ) |
252 |
53 49 250 54 251
|
lttrd |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
253 |
252
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ≠ 0 ) |
254 |
247 43 253 248
|
divne0d |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) / 𝑁 ) ≠ 0 ) |
255 |
249 254
|
logcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ∈ ℂ ) |
256 |
87 100 59
|
divcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ∈ ℂ ) |
257 |
246 255 256
|
subdid |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) ) |
258 |
99 90
|
addcomd |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · 𝑁 ) + 1 ) = ( 1 + ( 2 · 𝑁 ) ) ) |
259 |
258
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) = ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ) |
260 |
259
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
261 |
197
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 0 ) |
262 |
100 87 59 261
|
divcan6d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) = 1 ) |
263 |
260 262
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − ( ( ( ( 2 · 𝑁 ) + 1 ) / 2 ) · ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
264 |
245 257 263
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) − ( 2 / ( ( 2 · 𝑁 ) + 1 ) ) ) ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
265 |
242 264
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
266 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) |
267 |
266
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 1 + ( 2 · 𝑛 ) ) = ( 1 + ( 2 · 𝑁 ) ) ) |
268 |
267
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) = ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) ) |
269 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 + 1 ) = ( 𝑁 + 1 ) ) |
270 |
|
id |
⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) |
271 |
269 270
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 + 1 ) / 𝑛 ) = ( ( 𝑁 + 1 ) / 𝑁 ) ) |
272 |
271
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) = ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) |
273 |
268 272
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) = ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ) |
274 |
273
|
oveq1d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( 1 + ( 2 · 𝑛 ) ) / 2 ) · ( log ‘ ( ( 𝑛 + 1 ) / 𝑛 ) ) ) − 1 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
275 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
276 |
127 255
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) ∈ ℂ ) |
277 |
276 90
|
subcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ∈ ℂ ) |
278 |
1 274 275 277
|
fvmptd3 |
⊢ ( 𝑁 ∈ ℕ → ( 𝐽 ‘ 𝑁 ) = ( ( ( ( 1 + ( 2 · 𝑁 ) ) / 2 ) · ( log ‘ ( ( 𝑁 + 1 ) / 𝑁 ) ) ) − 1 ) ) |
279 |
265 278
|
breqtrrd |
⊢ ( 𝑁 ∈ ℕ → seq 1 ( + , 𝐾 ) ⇝ ( 𝐽 ‘ 𝑁 ) ) |