| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stirlinglem8.1 |
⊢ Ⅎ 𝑛 𝜑 |
| 2 |
|
stirlinglem8.2 |
⊢ Ⅎ 𝑛 𝐴 |
| 3 |
|
stirlinglem8.3 |
⊢ Ⅎ 𝑛 𝐷 |
| 4 |
|
stirlinglem8.4 |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 5 |
|
stirlinglem8.5 |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℝ+ ) |
| 6 |
|
stirlinglem8.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 7 |
|
stirlinglem8.7 |
⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 8 |
|
stirlinglem8.8 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 9 |
|
stirlinglem8.9 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) |
| 10 |
|
stirlinglem8.10 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 11 |
|
stirlinglem8.11 |
⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) |
| 12 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 13 |
7 12
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐿 |
| 14 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 15 |
8 14
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑀 |
| 16 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 17 |
6 16
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐹 |
| 18 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 19 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 20 |
|
rrpsscn |
⊢ ℝ+ ⊆ ℂ |
| 21 |
|
fss |
⊢ ( ( 𝐴 : ℕ ⟶ ℝ+ ∧ ℝ+ ⊆ ℂ ) → 𝐴 : ℕ ⟶ ℂ ) |
| 22 |
5 20 21
|
sylancl |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℂ ) |
| 23 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℕ0 ) |
| 25 |
|
nnex |
⊢ ℕ ∈ V |
| 26 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) ∈ V |
| 27 |
7 26
|
eqeltri |
⊢ 𝐿 ∈ V |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
| 29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 30 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
| 31 |
30
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 32 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 4 ∈ ℕ0 ) |
| 33 |
31 32
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
| 34 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 35 |
29 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 36 |
1 2 13 18 19 22 11 24 28 35
|
climexp |
⊢ ( 𝜑 → 𝐿 ⇝ ( 𝐶 ↑ 4 ) ) |
| 37 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) ∈ V |
| 38 |
6 37
|
eqeltri |
⊢ 𝐹 ∈ V |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 40 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : ℕ ⟶ ℂ ) |
| 41 |
|
2nn |
⊢ 2 ∈ ℕ |
| 42 |
41
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 43 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 44 |
42 43
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ ) |
| 46 |
40 45
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
| 47 |
1 46 4
|
fmptdf |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ℂ ) |
| 48 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) |
| 49 |
|
fex |
⊢ ( ( 𝐴 : ℕ ⟶ ℂ ∧ ℕ ∈ V ) → 𝐴 ∈ V ) |
| 50 |
22 25 49
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 51 |
|
1nn |
⊢ 1 ∈ ℕ |
| 52 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 53 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 54 |
52 53
|
mulcld |
⊢ ( 𝜑 → ( 2 · 1 ) ∈ ℂ ) |
| 55 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 2 · 𝑛 ) = ( 2 · 1 ) ) |
| 56 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) |
| 57 |
55 56
|
fvmptg |
⊢ ( ( 1 ∈ ℕ ∧ ( 2 · 1 ) ∈ ℂ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) = ( 2 · 1 ) ) |
| 58 |
51 54 57
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) = ( 2 · 1 ) ) |
| 59 |
41
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 60 |
51
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 61 |
59 60
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · 1 ) ∈ ℕ ) |
| 62 |
58 61
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) ∈ ℕ ) |
| 63 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
| 64 |
42
|
nnred |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
| 65 |
44
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
| 66 |
42
|
nnge1d |
⊢ ( 𝑛 ∈ ℕ → 1 ≤ 2 ) |
| 67 |
63 64 65 66
|
leadd2dd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≤ ( ( 2 · 𝑛 ) + 2 ) ) |
| 68 |
56
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
| 69 |
44 68
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
| 70 |
69
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
| 72 |
71
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑘 ∈ ℕ ↦ ( 2 · 𝑘 ) ) |
| 73 |
72
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑘 ∈ ℕ ↦ ( 2 · 𝑘 ) ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 = ( 𝑛 + 1 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑛 + 1 ) ) ) |
| 76 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 77 |
42 76
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 78 |
73 75 76 77
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) = ( 2 · ( 𝑛 + 1 ) ) ) |
| 79 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
| 80 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
| 81 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
| 82 |
79 80 81
|
adddid |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) ) |
| 83 |
79
|
mulridd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 1 ) = 2 ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑛 ) + 2 ) ) |
| 85 |
78 82 84
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + 2 ) ) |
| 86 |
67 70 85
|
3brtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 87 |
44
|
nnzd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℤ ) |
| 88 |
69 87
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ∈ ℤ ) |
| 89 |
88
|
peano2zd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ∈ ℤ ) |
| 90 |
77
|
nnzd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 91 |
78 90
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 92 |
|
eluz |
⊢ ( ( ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ∈ ℤ ∧ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ↔ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 93 |
89 91 92
|
syl2anc |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ↔ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 94 |
86 93
|
mpbird |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ) |
| 95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ) |
| 96 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) ∈ V |
| 97 |
4 96
|
eqeltri |
⊢ 𝐷 ∈ V |
| 98 |
97
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 99 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 100 |
29 46 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
| 101 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
| 102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) |
| 103 |
102
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( 𝐴 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) ) |
| 104 |
100 103
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) ) |
| 105 |
1 2 3 48 18 19 50 31 11 62 95 98 104
|
climsuse |
⊢ ( 𝜑 → 𝐷 ⇝ 𝐶 ) |
| 106 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 107 |
106
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
| 108 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ V |
| 109 |
8 108
|
eqeltri |
⊢ 𝑀 ∈ V |
| 110 |
109
|
a1i |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
| 111 |
9
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
| 112 |
111
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
| 113 |
8
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 114 |
29 112 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
| 115 |
1 3 15 18 19 47 105 107 110 114
|
climexp |
⊢ ( 𝜑 → 𝑀 ⇝ ( 𝐶 ↑ 2 ) ) |
| 116 |
10
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 117 |
10
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 118 |
|
2z |
⊢ 2 ∈ ℤ |
| 119 |
118
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 120 |
116 117 119
|
expne0d |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ≠ 0 ) |
| 121 |
1 33 7
|
fmptdf |
⊢ ( 𝜑 → 𝐿 : ℕ ⟶ ℂ ) |
| 122 |
121
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) ∈ ℂ ) |
| 123 |
114 112
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ℂ ) |
| 124 |
100
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 125 |
114 124
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
| 126 |
100 9
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
| 127 |
118
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℤ ) |
| 128 |
126 127
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℝ+ ) |
| 129 |
125 128
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ℝ+ ) |
| 130 |
129
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ≠ 0 ) |
| 131 |
130
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( 𝑀 ‘ 𝑛 ) = 0 ) |
| 132 |
|
0cn |
⊢ 0 ∈ ℂ |
| 133 |
|
elsn2g |
⊢ ( 0 ∈ ℂ → ( ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ↔ ( 𝑀 ‘ 𝑛 ) = 0 ) ) |
| 134 |
132 133
|
ax-mp |
⊢ ( ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ↔ ( 𝑀 ‘ 𝑛 ) = 0 ) |
| 135 |
131 134
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ) |
| 136 |
123 135
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 137 |
32
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 4 ∈ ℤ ) |
| 138 |
30 137
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℝ+ ) |
| 139 |
9 127
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℝ+ ) |
| 140 |
138 139
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℝ+ ) |
| 141 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℝ+ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 142 |
29 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 143 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℝ+ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 144 |
29 138 143
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
| 145 |
144 114
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐿 ‘ 𝑛 ) / ( 𝑀 ‘ 𝑛 ) ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
| 146 |
142 145
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐿 ‘ 𝑛 ) / ( 𝑀 ‘ 𝑛 ) ) ) |
| 147 |
1 13 15 17 18 19 36 39 115 120 122 136 146
|
climdivf |
⊢ ( 𝜑 → 𝐹 ⇝ ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
| 148 |
|
2cn |
⊢ 2 ∈ ℂ |
| 149 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 150 |
148 148 149
|
mvlladdi |
⊢ 2 = ( 4 − 2 ) |
| 151 |
150
|
a1i |
⊢ ( 𝜑 → 2 = ( 4 − 2 ) ) |
| 152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( 𝐶 ↑ ( 4 − 2 ) ) ) |
| 153 |
24
|
nn0zd |
⊢ ( 𝜑 → 4 ∈ ℤ ) |
| 154 |
116 117 119 153
|
expsubd |
⊢ ( 𝜑 → ( 𝐶 ↑ ( 4 − 2 ) ) = ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
| 155 |
152 154
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
| 156 |
147 155
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ⇝ ( 𝐶 ↑ 2 ) ) |