Step |
Hyp |
Ref |
Expression |
1 |
|
stirlinglem8.1 |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
stirlinglem8.2 |
⊢ Ⅎ 𝑛 𝐴 |
3 |
|
stirlinglem8.3 |
⊢ Ⅎ 𝑛 𝐷 |
4 |
|
stirlinglem8.4 |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
5 |
|
stirlinglem8.5 |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℝ+ ) |
6 |
|
stirlinglem8.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
7 |
|
stirlinglem8.7 |
⊢ 𝐿 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
8 |
|
stirlinglem8.8 |
⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
9 |
|
stirlinglem8.9 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℝ+ ) |
10 |
|
stirlinglem8.10 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
11 |
|
stirlinglem8.11 |
⊢ ( 𝜑 → 𝐴 ⇝ 𝐶 ) |
12 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
13 |
7 12
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐿 |
14 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
15 |
8 14
|
nfcxfr |
⊢ Ⅎ 𝑛 𝑀 |
16 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
17 |
6 16
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐹 |
18 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
19 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
20 |
|
rrpsscn |
⊢ ℝ+ ⊆ ℂ |
21 |
|
fss |
⊢ ( ( 𝐴 : ℕ ⟶ ℝ+ ∧ ℝ+ ⊆ ℂ ) → 𝐴 : ℕ ⟶ ℂ ) |
22 |
5 20 21
|
sylancl |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ℂ ) |
23 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
24 |
23
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℕ0 ) |
25 |
|
nnex |
⊢ ℕ ∈ V |
26 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) ∈ V |
27 |
7 26
|
eqeltri |
⊢ 𝐿 ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → 𝐿 ∈ V ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
30 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℝ+ ) |
31 |
30
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
32 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 4 ∈ ℕ0 ) |
33 |
31 32
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) |
34 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℂ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
35 |
29 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
36 |
1 2 13 18 19 22 11 24 28 35
|
climexp |
⊢ ( 𝜑 → 𝐿 ⇝ ( 𝐶 ↑ 4 ) ) |
37 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) ∈ V |
38 |
6 37
|
eqeltri |
⊢ 𝐹 ∈ V |
39 |
38
|
a1i |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
40 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : ℕ ⟶ ℂ ) |
41 |
|
2nn |
⊢ 2 ∈ ℕ |
42 |
41
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
43 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
44 |
42 43
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℕ ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) ∈ ℕ ) |
46 |
40 45
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) |
47 |
1 46 4
|
fmptdf |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ ℂ ) |
48 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) |
49 |
|
fex |
⊢ ( ( 𝐴 : ℕ ⟶ ℂ ∧ ℕ ∈ V ) → 𝐴 ∈ V ) |
50 |
22 25 49
|
sylancl |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
51 |
|
1nn |
⊢ 1 ∈ ℕ |
52 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
53 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
54 |
52 53
|
mulcld |
⊢ ( 𝜑 → ( 2 · 1 ) ∈ ℂ ) |
55 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 2 · 𝑛 ) = ( 2 · 1 ) ) |
56 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) |
57 |
55 56
|
fvmptg |
⊢ ( ( 1 ∈ ℕ ∧ ( 2 · 1 ) ∈ ℂ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) = ( 2 · 1 ) ) |
58 |
51 54 57
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) = ( 2 · 1 ) ) |
59 |
41
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
60 |
51
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
61 |
59 60
|
nnmulcld |
⊢ ( 𝜑 → ( 2 · 1 ) ∈ ℕ ) |
62 |
58 61
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 1 ) ∈ ℕ ) |
63 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
64 |
42
|
nnred |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
65 |
44
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℝ ) |
66 |
42
|
nnge1d |
⊢ ( 𝑛 ∈ ℕ → 1 ≤ 2 ) |
67 |
63 64 65 66
|
leadd2dd |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + 1 ) ≤ ( ( 2 · 𝑛 ) + 2 ) ) |
68 |
56
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 2 · 𝑛 ) ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
69 |
44 68
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) = ( ( 2 · 𝑛 ) + 1 ) ) |
71 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
72 |
71
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑘 ∈ ℕ ↦ ( 2 · 𝑘 ) ) |
73 |
72
|
a1i |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) = ( 𝑘 ∈ ℕ ↦ ( 2 · 𝑘 ) ) ) |
74 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 = ( 𝑛 + 1 ) ) → 𝑘 = ( 𝑛 + 1 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 = ( 𝑛 + 1 ) ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑛 + 1 ) ) ) |
76 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
77 |
42 76
|
nnmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
78 |
73 75 76 77
|
fvmptd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) = ( 2 · ( 𝑛 + 1 ) ) ) |
79 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℂ ) |
80 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
81 |
|
1cnd |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℂ ) |
82 |
79 80 81
|
adddid |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) ) |
83 |
79
|
mulid1d |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 1 ) = 2 ) |
84 |
83
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · 𝑛 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑛 ) + 2 ) ) |
85 |
78 82 84
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) = ( ( 2 · 𝑛 ) + 2 ) ) |
86 |
67 70 85
|
3brtr4d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) |
87 |
44
|
nnzd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · 𝑛 ) ∈ ℤ ) |
88 |
69 87
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ∈ ℤ ) |
89 |
88
|
peano2zd |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ∈ ℤ ) |
90 |
77
|
nnzd |
⊢ ( 𝑛 ∈ ℕ → ( 2 · ( 𝑛 + 1 ) ) ∈ ℤ ) |
91 |
78 90
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) |
92 |
|
eluz |
⊢ ( ( ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ∈ ℤ ∧ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ℤ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ↔ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
93 |
89 91 92
|
syl2anc |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ↔ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
94 |
86 93
|
mpbird |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ) |
95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ ( 𝑛 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) + 1 ) ) ) |
96 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) ∈ V |
97 |
4 96
|
eqeltri |
⊢ 𝐷 ∈ V |
98 |
97
|
a1i |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
99 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℂ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
100 |
29 46 99
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( 2 · 𝑛 ) ) ) |
101 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) = ( 2 · 𝑛 ) ) |
102 |
101
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 · 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) |
103 |
102
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) = ( 𝐴 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) ) |
104 |
100 103
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = ( 𝐴 ‘ ( ( 𝑛 ∈ ℕ ↦ ( 2 · 𝑛 ) ) ‘ 𝑛 ) ) ) |
105 |
1 2 3 48 18 19 50 31 11 62 95 98 104
|
climsuse |
⊢ ( 𝜑 → 𝐷 ⇝ 𝐶 ) |
106 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
107 |
106
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ0 ) |
108 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ V |
109 |
8 108
|
eqeltri |
⊢ 𝑀 ∈ V |
110 |
109
|
a1i |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
111 |
9
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ ℂ ) |
112 |
111
|
sqcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) |
113 |
8
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℂ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
114 |
29 112 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) |
115 |
1 3 15 18 19 47 105 107 110 114
|
climexp |
⊢ ( 𝜑 → 𝑀 ⇝ ( 𝐶 ↑ 2 ) ) |
116 |
10
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
117 |
10
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
118 |
|
2z |
⊢ 2 ∈ ℤ |
119 |
118
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
120 |
116 117 119
|
expne0d |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ≠ 0 ) |
121 |
1 33 7
|
fmptdf |
⊢ ( 𝜑 → 𝐿 : ℕ ⟶ ℂ ) |
122 |
121
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) ∈ ℂ ) |
123 |
114 112
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ℂ ) |
124 |
100
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
125 |
114 124
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) = ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ) |
126 |
100 9
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ ( 2 · 𝑛 ) ) ∈ ℝ+ ) |
127 |
118
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 2 ∈ ℤ ) |
128 |
126 127
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ ( 2 · 𝑛 ) ) ↑ 2 ) ∈ ℝ+ ) |
129 |
125 128
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ℝ+ ) |
130 |
129
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ≠ 0 ) |
131 |
130
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( 𝑀 ‘ 𝑛 ) = 0 ) |
132 |
|
0cn |
⊢ 0 ∈ ℂ |
133 |
|
elsn2g |
⊢ ( 0 ∈ ℂ → ( ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ↔ ( 𝑀 ‘ 𝑛 ) = 0 ) ) |
134 |
132 133
|
ax-mp |
⊢ ( ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ↔ ( 𝑀 ‘ 𝑛 ) = 0 ) |
135 |
131 134
|
sylnibr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ¬ ( 𝑀 ‘ 𝑛 ) ∈ { 0 } ) |
136 |
123 135
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝑛 ) ∈ ( ℂ ∖ { 0 } ) ) |
137 |
32
|
nn0zd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 4 ∈ ℤ ) |
138 |
30 137
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℝ+ ) |
139 |
9 127
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ∈ ℝ+ ) |
140 |
138 139
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℝ+ ) |
141 |
6
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ∈ ℝ+ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
142 |
29 140 141
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
143 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ∈ ℝ+ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
144 |
29 138 143
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐿 ‘ 𝑛 ) = ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) ) |
145 |
144 114
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐿 ‘ 𝑛 ) / ( 𝑀 ‘ 𝑛 ) ) = ( ( ( 𝐴 ‘ 𝑛 ) ↑ 4 ) / ( ( 𝐷 ‘ 𝑛 ) ↑ 2 ) ) ) |
146 |
142 145
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐿 ‘ 𝑛 ) / ( 𝑀 ‘ 𝑛 ) ) ) |
147 |
1 13 15 17 18 19 36 39 115 120 122 136 146
|
climdivf |
⊢ ( 𝜑 → 𝐹 ⇝ ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
148 |
|
2cn |
⊢ 2 ∈ ℂ |
149 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
150 |
148 148 149
|
mvlladdi |
⊢ 2 = ( 4 − 2 ) |
151 |
150
|
a1i |
⊢ ( 𝜑 → 2 = ( 4 − 2 ) ) |
152 |
151
|
oveq2d |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( 𝐶 ↑ ( 4 − 2 ) ) ) |
153 |
24
|
nn0zd |
⊢ ( 𝜑 → 4 ∈ ℤ ) |
154 |
116 117 119 153
|
expsubd |
⊢ ( 𝜑 → ( 𝐶 ↑ ( 4 − 2 ) ) = ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
155 |
152 154
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( ( 𝐶 ↑ 4 ) / ( 𝐶 ↑ 2 ) ) ) |
156 |
147 155
|
breqtrrd |
⊢ ( 𝜑 → 𝐹 ⇝ ( 𝐶 ↑ 2 ) ) |