Step |
Hyp |
Ref |
Expression |
1 |
|
stirlingr.1 |
⊢ 𝑆 = ( 𝑛 ∈ ℕ0 ↦ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
2 |
|
stirlingr.2 |
⊢ 𝑅 = ( ⇝𝑡 ‘ ( topGen ‘ ran (,) ) ) |
3 |
1
|
stirling |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 |
4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
5 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) |
7 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
8 |
|
faccl |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) |
9 |
|
nnre |
⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℝ ) |
10 |
7 8 9
|
3syl |
⊢ ( 𝑛 ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℝ ) |
11 |
|
2re |
⊢ 2 ∈ ℝ |
12 |
11
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ ) |
13 |
|
pire |
⊢ π ∈ ℝ |
14 |
13
|
a1i |
⊢ ( 𝑛 ∈ ℕ → π ∈ ℝ ) |
15 |
12 14
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · π ) ∈ ℝ ) |
16 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
17 |
15 16
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · π ) · 𝑛 ) ∈ ℝ ) |
18 |
|
0re |
⊢ 0 ∈ ℝ |
19 |
18
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 ∈ ℝ ) |
20 |
|
2pos |
⊢ 0 < 2 |
21 |
20
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 < 2 ) |
22 |
19 12 21
|
ltled |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ 2 ) |
23 |
|
pipos |
⊢ 0 < π |
24 |
18 13 23
|
ltleii |
⊢ 0 ≤ π |
25 |
24
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ π ) |
26 |
12 14 22 25
|
mulge0d |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( 2 · π ) ) |
27 |
7
|
nn0ge0d |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ 𝑛 ) |
28 |
15 16 26 27
|
mulge0d |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( ( 2 · π ) · 𝑛 ) ) |
29 |
17 28
|
resqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) ∈ ℝ ) |
30 |
|
ere |
⊢ e ∈ ℝ |
31 |
30
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℝ ) |
32 |
|
epos |
⊢ 0 < e |
33 |
18 32
|
gtneii |
⊢ e ≠ 0 |
34 |
33
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ≠ 0 ) |
35 |
16 31 34
|
redivcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℝ ) |
36 |
35 7
|
reexpcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℝ ) |
37 |
29 36
|
remulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ ) |
38 |
1
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ ) → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
39 |
7 37 38
|
syl2anc |
⊢ ( 𝑛 ∈ ℕ → ( 𝑆 ‘ 𝑛 ) = ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ) |
40 |
|
2rp |
⊢ 2 ∈ ℝ+ |
41 |
40
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℝ+ ) |
42 |
|
pirp |
⊢ π ∈ ℝ+ |
43 |
42
|
a1i |
⊢ ( 𝑛 ∈ ℕ → π ∈ ℝ+ ) |
44 |
41 43
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( 2 · π ) ∈ ℝ+ ) |
45 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
46 |
44 45
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 2 · π ) · 𝑛 ) ∈ ℝ+ ) |
47 |
46
|
rpsqrtcld |
⊢ ( 𝑛 ∈ ℕ → ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) ∈ ℝ+ ) |
48 |
|
epr |
⊢ e ∈ ℝ+ |
49 |
48
|
a1i |
⊢ ( 𝑛 ∈ ℕ → e ∈ ℝ+ ) |
50 |
45 49
|
rpdivcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 / e ) ∈ ℝ+ ) |
51 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
52 |
50 51
|
rpexpcld |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / e ) ↑ 𝑛 ) ∈ ℝ+ ) |
53 |
47 52
|
rpmulcld |
⊢ ( 𝑛 ∈ ℕ → ( ( √ ‘ ( ( 2 · π ) · 𝑛 ) ) · ( ( 𝑛 / e ) ↑ 𝑛 ) ) ∈ ℝ+ ) |
54 |
39 53
|
eqeltrd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑆 ‘ 𝑛 ) ∈ ℝ+ ) |
55 |
10 54
|
rerpdivcld |
⊢ ( 𝑛 ∈ ℕ → ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ∈ ℝ ) |
56 |
6 55
|
fmpti |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ |
57 |
56
|
a1i |
⊢ ( ⊤ → ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) : ℕ ⟶ ℝ ) |
58 |
2 4 5 57
|
climreeq |
⊢ ( ⊤ → ( ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) ) |
59 |
58
|
mptru |
⊢ ( ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 ↔ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) ⇝ 1 ) |
60 |
3 59
|
mpbir |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( ! ‘ 𝑛 ) / ( 𝑆 ‘ 𝑛 ) ) ) 𝑅 1 |