| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stle.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
stle.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 5 |
3 4
|
pm3.2i |
⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) |
| 6 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 7 |
4 1
|
chsscon3i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 8 |
6 7
|
mpbi |
⊢ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) |
| 9 |
|
stj |
⊢ ( 𝑆 ∈ States → ( ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ ) ∧ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ) → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 10 |
5 8 9
|
mp2ani |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |