| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sto1.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
1
|
sto1i |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) |
| 3 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) ) |
| 4 |
1 3
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 7 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) ) |
| 8 |
6 7
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) |
| 10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 11 |
|
subadd |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( 1 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) ) |
| 12 |
10 11
|
mp3an1 |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) → ( ( 1 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) ) |
| 13 |
5 9 12
|
syl2anc |
⊢ ( 𝑆 ∈ States → ( ( 1 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) ) |
| 14 |
2 13
|
mpbird |
⊢ ( 𝑆 ∈ States → ( 1 − ( 𝑆 ‘ 𝐴 ) ) = ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 15 |
14
|
eqcomd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = ( 1 − ( 𝑆 ‘ 𝐴 ) ) ) |