Step |
Hyp |
Ref |
Expression |
1 |
|
stoweid.1 |
⊢ Ⅎ 𝑡 𝐹 |
2 |
|
stoweid.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweid.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
4 |
|
stoweid.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
5 |
|
stoweid.5 |
⊢ 𝑇 = ∪ 𝐽 |
6 |
|
stoweid.6 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
7 |
|
stoweid.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
8 |
|
stoweid.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
9 |
|
stoweid.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
10 |
|
stoweid.10 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
11 |
|
stoweid.11 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ ℎ ∈ 𝐴 ( ℎ ‘ 𝑟 ) ≠ ( ℎ ‘ 𝑡 ) ) |
12 |
|
stoweid.12 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
13 |
|
stoweid.13 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 = ∅ ) → 𝑇 = ∅ ) |
15 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
16 |
|
1re |
⊢ 1 ∈ ℝ |
17 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
18 |
17
|
mpteq2dv |
⊢ ( 𝑥 = 1 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ 1 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) ) |
20 |
19
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ℝ ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 → ( 1 ∈ ℝ → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) ) |
21 |
15 16 20
|
mpisyl |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = ∅ ) → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
23 |
14 22
|
stoweidlem9 |
⊢ ( ( 𝜑 ∧ 𝑇 = ∅ ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ) |
24 |
|
nfv |
⊢ Ⅎ 𝑓 𝜑 |
25 |
|
nfv |
⊢ Ⅎ 𝑓 ¬ 𝑇 = ∅ |
26 |
24 25
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ¬ 𝑇 = ∅ ) |
27 |
|
nfv |
⊢ Ⅎ 𝑡 ¬ 𝑇 = ∅ |
28 |
2 27
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ¬ 𝑇 = ∅ ) |
29 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝐽 ∈ Comp ) |
31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝐴 ⊆ 𝐶 ) |
32 |
8
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
33 |
9
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
34 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
35 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ ℎ ∈ 𝐴 ( ℎ ‘ 𝑟 ) ≠ ( ℎ ‘ 𝑡 ) ) |
36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝐹 ∈ 𝐶 ) |
37 |
|
4re |
⊢ 4 ∈ ℝ |
38 |
|
4pos |
⊢ 0 < 4 |
39 |
37 38
|
elrpii |
⊢ 4 ∈ ℝ+ |
40 |
39
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ+ ) |
41 |
40
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ+ ) |
42 |
13 41
|
ifcld |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ+ ) |
43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ+ ) |
44 |
|
neqne |
⊢ ( ¬ 𝑇 = ∅ → 𝑇 ≠ ∅ ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝑇 ≠ ∅ ) |
46 |
13
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
47 |
|
4ne0 |
⊢ 4 ≠ 0 |
48 |
37 47
|
rereccli |
⊢ ( 1 / 4 ) ∈ ℝ |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ ) |
50 |
46 49
|
ifcld |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ) |
51 |
|
3re |
⊢ 3 ∈ ℝ |
52 |
|
3ne0 |
⊢ 3 ≠ 0 |
53 |
51 52
|
rereccli |
⊢ ( 1 / 3 ) ∈ ℝ |
54 |
53
|
a1i |
⊢ ( 𝜑 → ( 1 / 3 ) ∈ ℝ ) |
55 |
13
|
rpxrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
56 |
41
|
rpxrd |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ* ) |
57 |
|
xrmin2 |
⊢ ( ( 𝐸 ∈ ℝ* ∧ ( 1 / 4 ) ∈ ℝ* ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ ( 1 / 4 ) ) |
58 |
55 56 57
|
syl2anc |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ ( 1 / 4 ) ) |
59 |
|
3lt4 |
⊢ 3 < 4 |
60 |
|
3pos |
⊢ 0 < 3 |
61 |
51 37 60 38
|
ltrecii |
⊢ ( 3 < 4 ↔ ( 1 / 4 ) < ( 1 / 3 ) ) |
62 |
59 61
|
mpbi |
⊢ ( 1 / 4 ) < ( 1 / 3 ) |
63 |
62
|
a1i |
⊢ ( 𝜑 → ( 1 / 4 ) < ( 1 / 3 ) ) |
64 |
50 49 54 58 63
|
lelttrd |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) < ( 1 / 3 ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) < ( 1 / 3 ) ) |
66 |
1 26 28 29 3 5 30 6 31 32 33 34 35 36 43 45 65
|
stoweidlem62 |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ) |
67 |
23 66
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ) |
68 |
|
nfv |
⊢ Ⅎ 𝑡 𝑓 ∈ 𝐴 |
69 |
2 68
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) |
70 |
|
xrmin1 |
⊢ ( ( 𝐸 ∈ ℝ* ∧ ( 1 / 4 ) ∈ ℝ* ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) |
71 |
55 56 70
|
syl2anc |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) |
73 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ⊆ 𝐶 ) |
74 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 ∈ 𝐴 ) |
75 |
73 74
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 ∈ 𝐶 ) |
76 |
3 5 6 75
|
fcnre |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
78 |
76 77
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) ) |
79 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
80 |
|
recn |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ ℝ → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
81 |
78 79 80
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
82 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐹 ∈ 𝐶 ) |
83 |
3 5 6 82
|
fcnre |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐹 : 𝑇 ⟶ ℝ ) |
84 |
83 77
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) ) |
85 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
86 |
|
recn |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
87 |
84 85 86
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
88 |
81 87
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
89 |
88
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
90 |
16 37 47
|
3pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) |
91 |
|
redivcl |
⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( 1 / 4 ) ∈ ℝ ) |
92 |
90 91
|
mp1i |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ ) |
93 |
46 92
|
ifcld |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ) |
95 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
96 |
|
ltletr |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ∧ if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∧ if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
97 |
89 94 95 96
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∧ if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
98 |
72 97
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
99 |
69 98
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
100 |
99
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
101 |
67 100
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |