| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweid.1 |
⊢ Ⅎ 𝑡 𝐹 |
| 2 |
|
stoweid.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweid.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 4 |
|
stoweid.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 5 |
|
stoweid.5 |
⊢ 𝑇 = ∪ 𝐽 |
| 6 |
|
stoweid.6 |
⊢ 𝐶 = ( 𝐽 Cn 𝐾 ) |
| 7 |
|
stoweid.7 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| 8 |
|
stoweid.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 9 |
|
stoweid.9 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 10 |
|
stoweid.10 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 11 |
|
stoweid.11 |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ ℎ ∈ 𝐴 ( ℎ ‘ 𝑟 ) ≠ ( ℎ ‘ 𝑡 ) ) |
| 12 |
|
stoweid.12 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐶 ) |
| 13 |
|
stoweid.13 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑇 = ∅ ) → 𝑇 = ∅ ) |
| 15 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 16 |
|
1re |
⊢ 1 ∈ ℝ |
| 17 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
| 18 |
17
|
mpteq2dv |
⊢ ( 𝑥 = 1 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ 1 ) ) |
| 19 |
18
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) ) |
| 20 |
19
|
rspccv |
⊢ ( ∀ 𝑥 ∈ ℝ ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 → ( 1 ∈ ℝ → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) ) |
| 21 |
15 16 20
|
mpisyl |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑇 = ∅ ) → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
| 23 |
14 22
|
stoweidlem9 |
⊢ ( ( 𝜑 ∧ 𝑇 = ∅ ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑓 𝜑 |
| 25 |
|
nfv |
⊢ Ⅎ 𝑓 ¬ 𝑇 = ∅ |
| 26 |
24 25
|
nfan |
⊢ Ⅎ 𝑓 ( 𝜑 ∧ ¬ 𝑇 = ∅ ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑡 ¬ 𝑇 = ∅ |
| 28 |
2 27
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ¬ 𝑇 = ∅ ) |
| 29 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) − inf ( ran 𝐹 , ℝ , < ) ) ) |
| 30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝐽 ∈ Comp ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝐴 ⊆ 𝐶 ) |
| 32 |
8
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 33 |
9
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 34 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 35 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) ∧ ( 𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡 ) ) → ∃ ℎ ∈ 𝐴 ( ℎ ‘ 𝑟 ) ≠ ( ℎ ‘ 𝑡 ) ) |
| 36 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝐹 ∈ 𝐶 ) |
| 37 |
|
4re |
⊢ 4 ∈ ℝ |
| 38 |
|
4pos |
⊢ 0 < 4 |
| 39 |
37 38
|
elrpii |
⊢ 4 ∈ ℝ+ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ+ ) |
| 41 |
40
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ+ ) |
| 42 |
13 41
|
ifcld |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ+ ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ+ ) |
| 44 |
|
neqne |
⊢ ( ¬ 𝑇 = ∅ → 𝑇 ≠ ∅ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → 𝑇 ≠ ∅ ) |
| 46 |
13
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 47 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 48 |
37 47
|
rereccli |
⊢ ( 1 / 4 ) ∈ ℝ |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ ) |
| 50 |
46 49
|
ifcld |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ) |
| 51 |
|
3re |
⊢ 3 ∈ ℝ |
| 52 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 53 |
51 52
|
rereccli |
⊢ ( 1 / 3 ) ∈ ℝ |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ( 1 / 3 ) ∈ ℝ ) |
| 55 |
13
|
rpxrd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ* ) |
| 56 |
41
|
rpxrd |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ* ) |
| 57 |
|
xrmin2 |
⊢ ( ( 𝐸 ∈ ℝ* ∧ ( 1 / 4 ) ∈ ℝ* ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ ( 1 / 4 ) ) |
| 58 |
55 56 57
|
syl2anc |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ ( 1 / 4 ) ) |
| 59 |
|
3lt4 |
⊢ 3 < 4 |
| 60 |
|
3pos |
⊢ 0 < 3 |
| 61 |
51 37 60 38
|
ltrecii |
⊢ ( 3 < 4 ↔ ( 1 / 4 ) < ( 1 / 3 ) ) |
| 62 |
59 61
|
mpbi |
⊢ ( 1 / 4 ) < ( 1 / 3 ) |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → ( 1 / 4 ) < ( 1 / 3 ) ) |
| 64 |
50 49 54 58 63
|
lelttrd |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) < ( 1 / 3 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) < ( 1 / 3 ) ) |
| 66 |
1 26 28 29 3 5 30 6 31 32 33 34 35 36 43 45 65
|
stoweidlem62 |
⊢ ( ( 𝜑 ∧ ¬ 𝑇 = ∅ ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ) |
| 67 |
23 66
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ) |
| 68 |
|
nfv |
⊢ Ⅎ 𝑡 𝑓 ∈ 𝐴 |
| 69 |
2 68
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) |
| 70 |
|
xrmin1 |
⊢ ( ( 𝐸 ∈ ℝ* ∧ ( 1 / 4 ) ∈ ℝ* ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) |
| 71 |
55 56 70
|
syl2anc |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) |
| 73 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ⊆ 𝐶 ) |
| 74 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 ∈ 𝐴 ) |
| 75 |
73 74
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 ∈ 𝐶 ) |
| 76 |
3 5 6 75
|
fcnre |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 77 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 78 |
76 77
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) ) |
| 79 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
| 80 |
|
recn |
⊢ ( ( 𝑓 ‘ 𝑡 ) ∈ ℝ → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
| 81 |
78 79 80
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑡 ) ∈ ℂ ) |
| 82 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐹 ∈ 𝐶 ) |
| 83 |
3 5 6 82
|
fcnre |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐹 : 𝑇 ⟶ ℝ ) |
| 84 |
83 77
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) ) |
| 85 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑇 ⟶ ℝ ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
| 86 |
|
recn |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 87 |
84 85 86
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
| 88 |
81 87
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ∈ ℂ ) |
| 89 |
88
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ) |
| 90 |
16 37 47
|
3pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) |
| 91 |
|
redivcl |
⊢ ( ( 1 ∈ ℝ ∧ 4 ∈ ℝ ∧ 4 ≠ 0 ) → ( 1 / 4 ) ∈ ℝ ) |
| 92 |
90 91
|
mp1i |
⊢ ( 𝜑 → ( 1 / 4 ) ∈ ℝ ) |
| 93 |
46 92
|
ifcld |
⊢ ( 𝜑 → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ) |
| 94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ) |
| 95 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
| 96 |
|
ltletr |
⊢ ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) ∈ ℝ ∧ if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∈ ℝ ∧ 𝐸 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∧ if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 97 |
89 94 95 96
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ∧ if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) ≤ 𝐸 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 98 |
72 97
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) → ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 99 |
69 98
|
ralimdaa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ( ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) → ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 100 |
99
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < if ( 𝐸 ≤ ( 1 / 4 ) , 𝐸 , ( 1 / 4 ) ) → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) ) |
| 101 |
67 100
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝐴 ∀ 𝑡 ∈ 𝑇 ( abs ‘ ( ( 𝑓 ‘ 𝑡 ) − ( 𝐹 ‘ 𝑡 ) ) ) < 𝐸 ) |