Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem12.1 |
⊢ 𝑄 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
2 |
|
stoweidlem12.2 |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
3 |
|
stoweidlem12.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
4 |
|
stoweidlem12.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
6 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
7 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑡 ) ∈ ℝ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑁 ∈ ℕ0 ) |
9 |
7 8
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ∈ ℝ ) |
10 |
6 9
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ ℝ ) |
11 |
4 3
|
jca |
⊢ ( 𝜑 → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
13 |
|
nn0expcl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐾 ↑ 𝑁 ) ∈ ℕ0 ) |
15 |
10 14
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ) |
16 |
1
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ∈ ℝ ) → ( 𝑄 ‘ 𝑡 ) = ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |
17 |
5 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑄 ‘ 𝑡 ) = ( ( 1 − ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑁 ) ) ↑ ( 𝐾 ↑ 𝑁 ) ) ) |