Metamath Proof Explorer


Theorem stoweidlem15

Description: This lemma is used to prove the existence of a function p as in Lemma 1 from BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 ≤ p ≤ 1, p__(t_0) = 0, and p > 0 on T - U. Here ( GI ) is used to represent p__(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem15.1 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
stoweidlem15.3 ( 𝜑𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 )
stoweidlem15.4 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
Assertion stoweidlem15 ( ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆𝑇 ) → ( ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) )

Proof

Step Hyp Ref Expression
1 stoweidlem15.1 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
2 stoweidlem15.3 ( 𝜑𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 )
3 stoweidlem15.4 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
4 simpl ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → 𝜑 )
5 2 ffvelrnda ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝐼 ) ∈ 𝑄 )
6 elrabi ( ( 𝐺𝐼 ) ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } → ( 𝐺𝐼 ) ∈ 𝐴 )
7 6 1 eleq2s ( ( 𝐺𝐼 ) ∈ 𝑄 → ( 𝐺𝐼 ) ∈ 𝐴 )
8 5 7 syl ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝐼 ) ∈ 𝐴 )
9 eleq1 ( 𝑓 = ( 𝐺𝐼 ) → ( 𝑓𝐴 ↔ ( 𝐺𝐼 ) ∈ 𝐴 ) )
10 9 anbi2d ( 𝑓 = ( 𝐺𝐼 ) → ( ( 𝜑𝑓𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺𝐼 ) ∈ 𝐴 ) ) )
11 feq1 ( 𝑓 = ( 𝐺𝐼 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺𝐼 ) : 𝑇 ⟶ ℝ ) )
12 10 11 imbi12d ( 𝑓 = ( 𝐺𝐼 ) → ( ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺𝐼 ) ∈ 𝐴 ) → ( 𝐺𝐼 ) : 𝑇 ⟶ ℝ ) ) )
13 12 3 vtoclg ( ( 𝐺𝐼 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺𝐼 ) ∈ 𝐴 ) → ( 𝐺𝐼 ) : 𝑇 ⟶ ℝ ) )
14 8 13 syl ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝜑 ∧ ( 𝐺𝐼 ) ∈ 𝐴 ) → ( 𝐺𝐼 ) : 𝑇 ⟶ ℝ ) )
15 4 8 14 mp2and ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝐼 ) : 𝑇 ⟶ ℝ )
16 15 ffvelrnda ( ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆𝑇 ) → ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∈ ℝ )
17 5 1 eleqtrdi ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺𝐼 ) ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } )
18 fveq1 ( = ( 𝐺𝐼 ) → ( 𝑍 ) = ( ( 𝐺𝐼 ) ‘ 𝑍 ) )
19 18 eqeq1d ( = ( 𝐺𝐼 ) → ( ( 𝑍 ) = 0 ↔ ( ( 𝐺𝐼 ) ‘ 𝑍 ) = 0 ) )
20 fveq1 ( = ( 𝐺𝐼 ) → ( 𝑡 ) = ( ( 𝐺𝐼 ) ‘ 𝑡 ) )
21 20 breq2d ( = ( 𝐺𝐼 ) → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ) )
22 20 breq1d ( = ( 𝐺𝐼 ) → ( ( 𝑡 ) ≤ 1 ↔ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) )
23 21 22 anbi12d ( = ( 𝐺𝐼 ) → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) )
24 23 ralbidv ( = ( 𝐺𝐼 ) → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) )
25 19 24 anbi12d ( = ( 𝐺𝐼 ) → ( ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) ↔ ( ( ( 𝐺𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) )
26 25 elrab ( ( 𝐺𝐼 ) ∈ { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) } ↔ ( ( 𝐺𝐼 ) ∈ 𝐴 ∧ ( ( ( 𝐺𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) )
27 17 26 sylib ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝐼 ) ∈ 𝐴 ∧ ( ( ( 𝐺𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) )
28 27 simprd ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) )
29 28 simprd ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) )
30 fveq2 ( 𝑠 = 𝑡 → ( ( 𝐺𝐼 ) ‘ 𝑠 ) = ( ( 𝐺𝐼 ) ‘ 𝑡 ) )
31 30 breq2d ( 𝑠 = 𝑡 → ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ↔ 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ) )
32 30 breq1d ( 𝑠 = 𝑡 → ( ( ( 𝐺𝐼 ) ‘ 𝑠 ) ≤ 1 ↔ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) )
33 31 32 anbi12d ( 𝑠 = 𝑡 → ( ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) )
34 33 cbvralvw ( ∀ 𝑠𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) )
35 fveq2 ( 𝑠 = 𝑆 → ( ( 𝐺𝐼 ) ‘ 𝑠 ) = ( ( 𝐺𝐼 ) ‘ 𝑆 ) )
36 35 breq2d ( 𝑠 = 𝑆 → ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ↔ 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ) )
37 35 breq1d ( 𝑠 = 𝑆 → ( ( ( 𝐺𝐼 ) ‘ 𝑠 ) ≤ 1 ↔ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) )
38 36 37 anbi12d ( 𝑠 = 𝑆 → ( ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) )
39 38 rspccva ( ( ∀ 𝑠𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑠 ) ≤ 1 ) ∧ 𝑆𝑇 ) → ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) )
40 34 39 sylanbr ( ( ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑡 ) ≤ 1 ) ∧ 𝑆𝑇 ) → ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) )
41 29 40 sylan ( ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆𝑇 ) → ( 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) )
42 41 simpld ( ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆𝑇 ) → 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) )
43 41 simprd ( ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆𝑇 ) → ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 )
44 16 42 43 3jca ( ( ( 𝜑𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆𝑇 ) → ( ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺𝐼 ) ‘ 𝑆 ) ≤ 1 ) )