Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem15.1 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
2 |
|
stoweidlem15.3 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) |
3 |
|
stoweidlem15.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
4 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
5 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝑄 ) |
6 |
|
elrabi |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } → ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) |
7 |
6 1
|
eleq2s |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝑄 → ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) |
8 |
5 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) |
9 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝐼 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝐼 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) ) ) |
11 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝐼 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) |
12 |
10 11
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝐼 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) ) |
13 |
12 3
|
vtoclg |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) |
14 |
8 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) |
15 |
4 8 14
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) |
16 |
15
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∈ ℝ ) |
17 |
5 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝐼 ) ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ) |
18 |
|
fveq1 |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ℎ ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) ) |
19 |
18
|
eqeq1d |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ( ℎ ‘ 𝑍 ) = 0 ↔ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) = 0 ) ) |
20 |
|
fveq1 |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ℎ ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) |
21 |
20
|
breq2d |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) ) |
22 |
20
|
breq1d |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) |
23 |
21 22
|
anbi12d |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
24 |
23
|
ralbidv |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
25 |
19 24
|
anbi12d |
⊢ ( ℎ = ( 𝐺 ‘ 𝐼 ) → ( ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) ↔ ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) ) |
26 |
25
|
elrab |
⊢ ( ( 𝐺 ‘ 𝐼 ) ∈ { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } ↔ ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ∧ ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) ) |
27 |
17 26
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝐼 ) ∈ 𝐴 ∧ ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) ) |
28 |
27
|
simprd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
29 |
28
|
simprd |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) |
31 |
30
|
breq2d |
⊢ ( 𝑠 = 𝑡 → ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ↔ 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) ) |
32 |
30
|
breq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ≤ 1 ↔ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
34 |
33
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ) |
35 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ) |
36 |
35
|
breq2d |
⊢ ( 𝑠 = 𝑆 → ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ↔ 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ) ) |
37 |
35
|
breq1d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ≤ 1 ↔ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) ) |
39 |
38
|
rspccva |
⊢ ( ( ∀ 𝑠 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 ) ≤ 1 ) ∧ 𝑆 ∈ 𝑇 ) → ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) |
40 |
34 39
|
sylanbr |
⊢ ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ≤ 1 ) ∧ 𝑆 ∈ 𝑇 ) → ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) |
41 |
29 40
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) |
42 |
41
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ) |
43 |
41
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) |
44 |
16 42 43
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑆 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ∧ ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ≤ 1 ) ) |