Metamath Proof Explorer


Theorem stoweidlem16

Description: Lemma for stoweid . The subset Y of functions in the algebra A , with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem16.1 𝑡 𝜑
stoweidlem16.2 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
stoweidlem16.3 𝐻 = ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
stoweidlem16.4 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
stoweidlem16.5 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
Assertion stoweidlem16 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝐻𝑌 )

Proof

Step Hyp Ref Expression
1 stoweidlem16.1 𝑡 𝜑
2 stoweidlem16.2 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
3 stoweidlem16.3 𝐻 = ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
4 stoweidlem16.4 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
5 stoweidlem16.5 ( ( 𝜑𝑓𝐴𝑔𝐴 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
6 simp1 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝜑 )
7 fveq1 ( = 𝑓 → ( 𝑡 ) = ( 𝑓𝑡 ) )
8 7 breq2d ( = 𝑓 → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( 𝑓𝑡 ) ) )
9 7 breq1d ( = 𝑓 → ( ( 𝑡 ) ≤ 1 ↔ ( 𝑓𝑡 ) ≤ 1 ) )
10 8 9 anbi12d ( = 𝑓 → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑓𝑡 ) ∧ ( 𝑓𝑡 ) ≤ 1 ) ) )
11 10 ralbidv ( = 𝑓 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑓𝑡 ) ∧ ( 𝑓𝑡 ) ≤ 1 ) ) )
12 11 2 elrab2 ( 𝑓𝑌 ↔ ( 𝑓𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑓𝑡 ) ∧ ( 𝑓𝑡 ) ≤ 1 ) ) )
13 12 simplbi ( 𝑓𝑌𝑓𝐴 )
14 13 3ad2ant2 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝑓𝐴 )
15 fveq1 ( = 𝑔 → ( 𝑡 ) = ( 𝑔𝑡 ) )
16 15 breq2d ( = 𝑔 → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( 𝑔𝑡 ) ) )
17 15 breq1d ( = 𝑔 → ( ( 𝑡 ) ≤ 1 ↔ ( 𝑔𝑡 ) ≤ 1 ) )
18 16 17 anbi12d ( = 𝑔 → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) )
19 18 ralbidv ( = 𝑔 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) )
20 19 2 elrab2 ( 𝑔𝑌 ↔ ( 𝑔𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) ) )
21 20 simplbi ( 𝑔𝑌𝑔𝐴 )
22 21 3ad2ant3 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝑔𝐴 )
23 6 14 22 5 syl3anc ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝐴 )
24 3 23 eqeltrid ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝐻𝐴 )
25 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 )
26 nfcv 𝑡 𝐴
27 25 26 nfrabw 𝑡 { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
28 2 27 nfcxfr 𝑡 𝑌
29 28 nfcri 𝑡 𝑓𝑌
30 28 nfcri 𝑡 𝑔𝑌
31 1 29 30 nf3an 𝑡 ( 𝜑𝑓𝑌𝑔𝑌 )
32 6 14 jca ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝜑𝑓𝐴 ) )
33 32 adantr ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝜑𝑓𝐴 ) )
34 33 4 syl ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 𝑓 : 𝑇 ⟶ ℝ )
35 simpr ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 𝑡𝑇 )
36 34 35 ffvelrnd ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝑓𝑡 ) ∈ ℝ )
37 6 22 jca ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝜑𝑔𝐴 ) )
38 eleq1w ( 𝑓 = 𝑔 → ( 𝑓𝐴𝑔𝐴 ) )
39 38 anbi2d ( 𝑓 = 𝑔 → ( ( 𝜑𝑓𝐴 ) ↔ ( 𝜑𝑔𝐴 ) ) )
40 feq1 ( 𝑓 = 𝑔 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝑔 : 𝑇 ⟶ ℝ ) )
41 39 40 imbi12d ( 𝑓 = 𝑔 → ( ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑𝑔𝐴 ) → 𝑔 : 𝑇 ⟶ ℝ ) ) )
42 41 4 vtoclg ( 𝑔𝐴 → ( ( 𝜑𝑔𝐴 ) → 𝑔 : 𝑇 ⟶ ℝ ) )
43 22 37 42 sylc ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝑔 : 𝑇 ⟶ ℝ )
44 43 ffvelrnda ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝑔𝑡 ) ∈ ℝ )
45 12 simprbi ( 𝑓𝑌 → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑓𝑡 ) ∧ ( 𝑓𝑡 ) ≤ 1 ) )
46 45 3ad2ant2 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑓𝑡 ) ∧ ( 𝑓𝑡 ) ≤ 1 ) )
47 46 r19.21bi ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 0 ≤ ( 𝑓𝑡 ) ∧ ( 𝑓𝑡 ) ≤ 1 ) )
48 47 simpld ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 0 ≤ ( 𝑓𝑡 ) )
49 20 simprbi ( 𝑔𝑌 → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) )
50 49 3ad2ant3 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) )
51 50 r19.21bi ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 0 ≤ ( 𝑔𝑡 ) ∧ ( 𝑔𝑡 ) ≤ 1 ) )
52 51 simpld ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 0 ≤ ( 𝑔𝑡 ) )
53 36 44 48 52 mulge0d ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 0 ≤ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
54 36 44 remulcld ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ∈ ℝ )
55 3 fvmpt2 ( ( 𝑡𝑇 ∧ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ∈ ℝ ) → ( 𝐻𝑡 ) = ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
56 35 54 55 syl2anc ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝐻𝑡 ) = ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
57 53 56 breqtrrd ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 0 ≤ ( 𝐻𝑡 ) )
58 1red ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → 1 ∈ ℝ )
59 47 simprd ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝑓𝑡 ) ≤ 1 )
60 51 simprd ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝑔𝑡 ) ≤ 1 )
61 36 58 44 58 48 52 59 60 lemul12ad ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ≤ ( 1 · 1 ) )
62 1t1e1 ( 1 · 1 ) = 1
63 61 62 breqtrdi ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ≤ 1 )
64 56 63 eqbrtrd ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 𝐻𝑡 ) ≤ 1 )
65 57 64 jca ( ( ( 𝜑𝑓𝑌𝑔𝑌 ) ∧ 𝑡𝑇 ) → ( 0 ≤ ( 𝐻𝑡 ) ∧ ( 𝐻𝑡 ) ≤ 1 ) )
66 65 ex ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 → ( 0 ≤ ( 𝐻𝑡 ) ∧ ( 𝐻𝑡 ) ≤ 1 ) ) )
67 31 66 ralrimi ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ∀ 𝑡𝑇 ( 0 ≤ ( 𝐻𝑡 ) ∧ ( 𝐻𝑡 ) ≤ 1 ) )
68 nfmpt1 𝑡 ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) )
69 3 68 nfcxfr 𝑡 𝐻
70 69 nfeq2 𝑡 = 𝐻
71 fveq1 ( = 𝐻 → ( 𝑡 ) = ( 𝐻𝑡 ) )
72 71 breq2d ( = 𝐻 → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( 𝐻𝑡 ) ) )
73 71 breq1d ( = 𝐻 → ( ( 𝑡 ) ≤ 1 ↔ ( 𝐻𝑡 ) ≤ 1 ) )
74 72 73 anbi12d ( = 𝐻 → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝐻𝑡 ) ∧ ( 𝐻𝑡 ) ≤ 1 ) ) )
75 70 74 ralbid ( = 𝐻 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝐻𝑡 ) ∧ ( 𝐻𝑡 ) ≤ 1 ) ) )
76 75 elrab ( 𝐻 ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } ↔ ( 𝐻𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝐻𝑡 ) ∧ ( 𝐻𝑡 ) ≤ 1 ) ) )
77 24 67 76 sylanbrc ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝐻 ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } )
78 77 2 eleqtrrdi ( ( 𝜑𝑓𝑌𝑔𝑌 ) → 𝐻𝑌 )