Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem16.1 |
⊢ Ⅎ 𝑡 𝜑 |
2 |
|
stoweidlem16.2 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
3 |
|
stoweidlem16.3 |
⊢ 𝐻 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
4 |
|
stoweidlem16.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
5 |
|
stoweidlem16.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
6 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝜑 ) |
7 |
|
fveq1 |
⊢ ( ℎ = 𝑓 → ( ℎ ‘ 𝑡 ) = ( 𝑓 ‘ 𝑡 ) ) |
8 |
7
|
breq2d |
⊢ ( ℎ = 𝑓 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝑓 ‘ 𝑡 ) ) ) |
9 |
7
|
breq1d |
⊢ ( ℎ = 𝑓 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( ℎ = 𝑓 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( ℎ = 𝑓 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
12 |
11 2
|
elrab2 |
⊢ ( 𝑓 ∈ 𝑌 ↔ ( 𝑓 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) ) |
13 |
12
|
simplbi |
⊢ ( 𝑓 ∈ 𝑌 → 𝑓 ∈ 𝐴 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝑓 ∈ 𝐴 ) |
15 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑡 ) = ( 𝑔 ‘ 𝑡 ) ) |
16 |
15
|
breq2d |
⊢ ( ℎ = 𝑔 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝑔 ‘ 𝑡 ) ) ) |
17 |
15
|
breq1d |
⊢ ( ℎ = 𝑔 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) |
18 |
16 17
|
anbi12d |
⊢ ( ℎ = 𝑔 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) |
19 |
18
|
ralbidv |
⊢ ( ℎ = 𝑔 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) |
20 |
19 2
|
elrab2 |
⊢ ( 𝑔 ∈ 𝑌 ↔ ( 𝑔 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) ) |
21 |
20
|
simplbi |
⊢ ( 𝑔 ∈ 𝑌 → 𝑔 ∈ 𝐴 ) |
22 |
21
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝑔 ∈ 𝐴 ) |
23 |
6 14 22 5
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
24 |
3 23
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝐻 ∈ 𝐴 ) |
25 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
26 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
27 |
25 26
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
28 |
2 27
|
nfcxfr |
⊢ Ⅎ 𝑡 𝑌 |
29 |
28
|
nfcri |
⊢ Ⅎ 𝑡 𝑓 ∈ 𝑌 |
30 |
28
|
nfcri |
⊢ Ⅎ 𝑡 𝑔 ∈ 𝑌 |
31 |
1 29 30
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) |
32 |
6 14
|
jca |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ) |
34 |
33 4
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
36 |
34 35
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑡 ) ∈ ℝ ) |
37 |
6 22
|
jca |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) ) |
38 |
|
eleq1w |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∈ 𝐴 ↔ 𝑔 ∈ 𝐴 ) ) |
39 |
38
|
anbi2d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) ) ) |
40 |
|
feq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝑔 : 𝑇 ⟶ ℝ ) ) |
41 |
39 40
|
imbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 : 𝑇 ⟶ ℝ ) ) ) |
42 |
41 4
|
vtoclg |
⊢ ( 𝑔 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → 𝑔 : 𝑇 ⟶ ℝ ) ) |
43 |
22 37 42
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝑔 : 𝑇 ⟶ ℝ ) |
44 |
43
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑔 ‘ 𝑡 ) ∈ ℝ ) |
45 |
12
|
simprbi |
⊢ ( 𝑓 ∈ 𝑌 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) |
47 |
46
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝑓 ‘ 𝑡 ) ∧ ( 𝑓 ‘ 𝑡 ) ≤ 1 ) ) |
48 |
47
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝑓 ‘ 𝑡 ) ) |
49 |
20
|
simprbi |
⊢ ( 𝑔 ∈ 𝑌 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) |
51 |
50
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝑔 ‘ 𝑡 ) ∧ ( 𝑔 ‘ 𝑡 ) ≤ 1 ) ) |
52 |
51
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝑔 ‘ 𝑡 ) ) |
53 |
36 44 48 52
|
mulge0d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
54 |
36 44
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) |
55 |
3
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ∈ ℝ ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
56 |
35 54 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) = ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
57 |
53 56
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐻 ‘ 𝑡 ) ) |
58 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℝ ) |
59 |
47
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑡 ) ≤ 1 ) |
60 |
51
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑔 ‘ 𝑡 ) ≤ 1 ) |
61 |
36 58 44 58 48 52 59 60
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ≤ ( 1 · 1 ) ) |
62 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
63 |
61 62
|
breqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ≤ 1 ) |
64 |
56 63
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑡 ) ≤ 1 ) |
65 |
57 64
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) |
66 |
65
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
67 |
31 66
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) |
68 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
69 |
3 68
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐻 |
70 |
69
|
nfeq2 |
⊢ Ⅎ 𝑡 ℎ = 𝐻 |
71 |
|
fveq1 |
⊢ ( ℎ = 𝐻 → ( ℎ ‘ 𝑡 ) = ( 𝐻 ‘ 𝑡 ) ) |
72 |
71
|
breq2d |
⊢ ( ℎ = 𝐻 → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( 𝐻 ‘ 𝑡 ) ) ) |
73 |
71
|
breq1d |
⊢ ( ℎ = 𝐻 → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) |
74 |
72 73
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
75 |
70 74
|
ralbid |
⊢ ( ℎ = 𝐻 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
76 |
75
|
elrab |
⊢ ( 𝐻 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ↔ ( 𝐻 ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐻 ‘ 𝑡 ) ∧ ( 𝐻 ‘ 𝑡 ) ≤ 1 ) ) ) |
77 |
24 67 76
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝐻 ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
78 |
77 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌 ) → 𝐻 ∈ 𝑌 ) |