Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem17.1 |
⊢ Ⅎ 𝑡 𝜑 |
2 |
|
stoweidlem17.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
3 |
|
stoweidlem17.3 |
⊢ ( 𝜑 → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) |
4 |
|
stoweidlem17.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
5 |
|
stoweidlem17.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
6 |
|
stoweidlem17.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
7 |
|
stoweidlem17.7 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
8 |
|
stoweidlem17.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
9 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
10 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
11 |
9 10
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
12 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
14 |
13
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) |
15 |
|
eleq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 0 ∈ ( 0 ... 𝑁 ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑁 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 0 ... 𝑛 ) = ( 0 ... 0 ) ) |
18 |
17
|
sumeq1d |
⊢ ( 𝑛 = 0 → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝑛 = 0 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
21 |
16 20
|
imbi12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
22 |
|
eleq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) |
23 |
22
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 0 ... 𝑛 ) = ( 0 ... 𝑚 ) ) |
25 |
24
|
sumeq1d |
⊢ ( 𝑛 = 𝑚 → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
28 |
23 27
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
29 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
30 |
29
|
anbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 0 ... 𝑛 ) = ( 0 ... ( 𝑚 + 1 ) ) ) |
32 |
31
|
sumeq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
33 |
32
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
35 |
30 34
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
36 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
39 |
38
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
40 |
39
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
41 |
40
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
42 |
37 41
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
43 |
|
0z |
⊢ 0 ∈ ℤ |
44 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
45 |
43 44
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
46 |
45
|
sumeq1i |
⊢ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
47 |
46
|
mpteq2i |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
48 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
49 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℂ ) |
50 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
51 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
52 |
|
0re |
⊢ 0 ∈ ℝ |
53 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
54 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
55 |
52 53 54
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
56 |
51 55
|
mpd |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
57 |
50 56
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
58 |
2 57
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
59 |
43
|
eluz1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
60 |
58 59
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
61 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
62 |
60 61
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
63 |
3 62
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) ∈ 𝐴 ) |
64 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑋 ‘ 0 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) |
65 |
64
|
imbi2d |
⊢ ( 𝑓 = ( 𝑋 ‘ 0 ) → ( ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( 𝜑 → ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) ) |
66 |
8
|
expcom |
⊢ ( 𝑓 ∈ 𝐴 → ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ) |
67 |
65 66
|
vtoclga |
⊢ ( ( 𝑋 ‘ 0 ) ∈ 𝐴 → ( 𝜑 → ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) |
68 |
63 67
|
mpcom |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) |
69 |
68
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ∈ ℝ ) |
70 |
69
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ∈ ℂ ) |
71 |
49 70
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ∈ ℂ ) |
72 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑋 ‘ 𝑖 ) = ( 𝑋 ‘ 0 ) ) |
73 |
72
|
fveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) |
74 |
73
|
oveq2d |
⊢ ( 𝑖 = 0 → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) |
75 |
74
|
sumsn |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ∈ ℂ ) → Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) |
76 |
43 71 75
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) |
77 |
1 76
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ) |
78 |
47 77
|
syl5eq |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ) |
79 |
1 5 6 8 7 63
|
stoweidlem2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
80 |
78 79
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
82 |
|
eqidd |
⊢ ( 𝑟 = 𝑡 → 𝐸 = 𝐸 ) |
83 |
82
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) = ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) |
84 |
83
|
eqcomi |
⊢ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) |
85 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
86 |
84 82 85 48
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) = 𝐸 ) |
87 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
88 |
1 87
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
90 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 ) |
91 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
92 |
|
id |
⊢ ( 𝑥 = 𝐸 → 𝑥 = 𝐸 ) |
93 |
92
|
mpteq2dv |
⊢ ( 𝑥 = 𝐸 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ) |
94 |
93
|
eleq1d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) ) |
95 |
94
|
imbi2d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) ) ) |
96 |
6
|
expcom |
⊢ ( 𝑥 ∈ ℝ → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ) |
97 |
95 96
|
vtoclga |
⊢ ( 𝐸 ∈ ℝ → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) ) |
98 |
7 97
|
mpcom |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) |
99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) |
100 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) |
101 |
100
|
oveq2d |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
102 |
101
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
103 |
102
|
eleq1d |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
104 |
103
|
imbi2d |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
105 |
83
|
eleq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) |
106 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) ) |
107 |
83
|
fveq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) |
108 |
106 107
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) ) |
109 |
108
|
oveq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
110 |
109
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
111 |
110
|
eleq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
112 |
111
|
imbi2d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
113 |
5
|
3com12 |
⊢ ( ( 𝑓 ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
114 |
113
|
3expib |
⊢ ( 𝑓 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
115 |
112 114
|
vtoclga |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
116 |
105 115
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
117 |
116
|
3impib |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
118 |
117
|
3com13 |
⊢ ( ( 𝑔 ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
119 |
118
|
3expib |
⊢ ( 𝑔 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
120 |
104 119
|
vtoclga |
⊢ ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
121 |
120
|
3impib |
⊢ ( ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
122 |
90 91 99 121
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
123 |
89 122
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
124 |
123
|
ad2antll |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
125 |
|
simprrl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → 𝜑 ) |
126 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℕ0 ) |
127 |
|
simprl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝜑 ) |
128 |
2
|
ad2antrl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
129 |
128
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
130 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
131 |
130
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℝ ) |
132 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
133 |
132
|
nn0red |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ ) |
134 |
133
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 1 ) ∈ ℝ ) |
135 |
2
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
136 |
135
|
ad2antrl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
137 |
|
lep1 |
⊢ ( 𝑚 ∈ ℝ → 𝑚 ≤ ( 𝑚 + 1 ) ) |
138 |
126 130 137
|
3syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
139 |
|
elfzle2 |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
140 |
139
|
ad2antll |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
141 |
131 134 136 138 140
|
letrd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ≤ 𝑁 ) |
142 |
|
elfz2nn0 |
⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑚 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑚 ≤ 𝑁 ) ) |
143 |
126 129 141 142
|
syl3anbrc |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ( 0 ... 𝑁 ) ) |
144 |
126 127 143
|
jca32 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) ) |
145 |
144
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) ) |
146 |
|
pm3.31 |
⊢ ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
147 |
146
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
148 |
145 147
|
mpd |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
149 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) = ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) |
150 |
149
|
oveq2d |
⊢ ( 𝑟 = 𝑡 → ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
151 |
150
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
152 |
151
|
eleq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
153 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) ) |
154 |
151
|
fveq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) |
155 |
153 154
|
eqtrdi |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
156 |
155
|
oveq2d |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
157 |
156
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
158 |
157
|
eleq1d |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
159 |
158
|
imbi2d |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
160 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) = ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
161 |
160
|
oveq2d |
⊢ ( 𝑟 = 𝑡 → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
162 |
161
|
sumeq2sdv |
⊢ ( 𝑟 = 𝑡 → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
163 |
162
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
164 |
163
|
eleq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
165 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) ) |
166 |
163
|
fveq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) |
167 |
165 166
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
168 |
167
|
oveq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) |
169 |
168
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ) |
170 |
169
|
eleq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
171 |
170
|
imbi2d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
172 |
4
|
3com12 |
⊢ ( ( 𝑓 ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
173 |
172
|
3expib |
⊢ ( 𝑓 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
174 |
171 173
|
vtoclga |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
175 |
164 174
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
176 |
175
|
3impib |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
177 |
176
|
3com13 |
⊢ ( ( 𝑔 ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
178 |
177
|
3expib |
⊢ ( 𝑔 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
179 |
159 178
|
vtoclga |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
180 |
152 179
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
181 |
180
|
3impib |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
182 |
124 125 148 181
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
183 |
|
3anass |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
184 |
183
|
biimpri |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
185 |
184
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
186 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ0 |
187 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) |
188 |
186 1 187
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
189 |
|
simpr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
190 |
|
fzfid |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
191 |
7
|
3ad2ant2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝐸 ∈ ℝ ) |
192 |
191
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
193 |
192
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝐸 ∈ ℝ ) |
194 |
|
fzelp1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) |
195 |
194
|
anim2i |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ) |
196 |
|
an32 |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ↔ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) ) |
197 |
195 196
|
sylib |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) ) |
198 |
3
|
3ad2ant2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) |
199 |
198
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) |
200 |
|
elfzuz3 |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
201 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( 0 ... ( 𝑚 + 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
202 |
200 201
|
syl |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 0 ... ( 𝑚 + 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
203 |
202
|
sselda |
⊢ ( ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
204 |
203
|
3ad2antl3 |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
205 |
199 204
|
ffvelrnd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( 𝑋 ‘ 𝑖 ) ∈ 𝐴 ) |
206 |
|
simpl2 |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝜑 ) |
207 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑋 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
208 |
207
|
imbi2d |
⊢ ( 𝑓 = ( 𝑋 ‘ 𝑖 ) → ( ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( 𝜑 → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
209 |
208 66
|
vtoclga |
⊢ ( ( 𝑋 ‘ 𝑖 ) ∈ 𝐴 → ( 𝜑 → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
210 |
205 206 209
|
sylc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
211 |
210
|
ffvelrnda |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
212 |
197 211
|
syl |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
213 |
193 212
|
remulcld |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
214 |
190 213
|
fsumrecl |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
215 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
216 |
215
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
217 |
189 214 216
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
218 |
217
|
oveq1d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
219 |
|
3simpc |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
220 |
219
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
221 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
222 |
221
|
imbi2d |
⊢ ( 𝑓 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( 𝜑 → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) ) ) |
223 |
222 66
|
vtoclga |
⊢ ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 → ( 𝜑 → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
224 |
90 91 223
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) |
225 |
220 224
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) |
226 |
225 189
|
ffvelrnd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) |
227 |
192 226
|
remulcld |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ∈ ℝ ) |
228 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
229 |
228
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
230 |
189 227 229
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
231 |
230
|
oveq2d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
232 |
|
elfzuz |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
233 |
232
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
234 |
233
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
235 |
192
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝐸 ∈ ℝ ) |
236 |
211
|
an32s |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
237 |
|
remulcl |
⊢ ( ( 𝐸 ∈ ℝ ∧ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
238 |
237
|
recnd |
⊢ ( ( 𝐸 ∈ ℝ ∧ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℂ ) |
239 |
235 236 238
|
syl2anc |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℂ ) |
240 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑋 ‘ 𝑖 ) = ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) |
241 |
240
|
fveq1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) |
242 |
241
|
oveq2d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
243 |
234 239 242
|
fsumm1 |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( Σ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
244 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
245 |
244
|
3ad2ant1 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝑚 ∈ ℂ ) |
246 |
245
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑚 ∈ ℂ ) |
247 |
|
1cnd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℂ ) |
248 |
246 247
|
pncand |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
249 |
248
|
oveq2d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) ) |
250 |
249
|
sumeq1d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
251 |
250
|
oveq1d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( Σ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
252 |
243 251
|
eqtrd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
253 |
218 231 252
|
3eqtr4rd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
254 |
188 253
|
mpteq2da |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
255 |
254
|
eleq1d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
256 |
185 255
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
257 |
182 256
|
mpbird |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
258 |
257
|
exp32 |
⊢ ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) → ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
259 |
258
|
pm2.86i |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
260 |
21 28 35 42 81 259
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
261 |
9 14 260
|
sylc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |