| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem17.1 |
⊢ Ⅎ 𝑡 𝜑 |
| 2 |
|
stoweidlem17.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
stoweidlem17.3 |
⊢ ( 𝜑 → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) |
| 4 |
|
stoweidlem17.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 5 |
|
stoweidlem17.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 6 |
|
stoweidlem17.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
| 7 |
|
stoweidlem17.7 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 8 |
|
stoweidlem17.8 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 9 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 10 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 11 |
9 10
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 12 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 14 |
13
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 0 ∈ ( 0 ... 𝑁 ) ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 0 ... 𝑛 ) = ( 0 ... 0 ) ) |
| 18 |
17
|
sumeq1d |
⊢ ( 𝑛 = 0 → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 19 |
18
|
mpteq2dv |
⊢ ( 𝑛 = 0 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 20 |
19
|
eleq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 21 |
16 20
|
imbi12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 22 |
|
eleq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) |
| 23 |
22
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 0 ... 𝑛 ) = ( 0 ... 𝑚 ) ) |
| 25 |
24
|
sumeq1d |
⊢ ( 𝑛 = 𝑚 → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 27 |
26
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 28 |
23 27
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 29 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 30 |
29
|
anbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 0 ... 𝑛 ) = ( 0 ... ( 𝑚 + 1 ) ) ) |
| 32 |
31
|
sumeq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 33 |
32
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 35 |
30 34
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 36 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 0 ... 𝑁 ) ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) |
| 37 |
36
|
anbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 38 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
| 39 |
38
|
sumeq1d |
⊢ ( 𝑛 = 𝑁 → Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 40 |
39
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 41 |
40
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 42 |
37 41
|
imbi12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑛 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 43 |
|
0z |
⊢ 0 ∈ ℤ |
| 44 |
|
fzsn |
⊢ ( 0 ∈ ℤ → ( 0 ... 0 ) = { 0 } ) |
| 45 |
43 44
|
ax-mp |
⊢ ( 0 ... 0 ) = { 0 } |
| 46 |
45
|
sumeq1i |
⊢ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 47 |
46
|
mpteq2i |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 48 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℂ ) |
| 50 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 51 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
| 52 |
|
0re |
⊢ 0 ∈ ℝ |
| 53 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 54 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
| 55 |
52 53 54
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
| 56 |
51 55
|
mpd |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 57 |
50 56
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 58 |
2 57
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 59 |
43
|
eluz1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) |
| 60 |
58 59
|
sylibr |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 61 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑁 ) ) |
| 62 |
60 61
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 63 |
3 62
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) ∈ 𝐴 ) |
| 64 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑋 ‘ 0 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) |
| 65 |
64
|
imbi2d |
⊢ ( 𝑓 = ( 𝑋 ‘ 0 ) → ( ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( 𝜑 → ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) ) |
| 66 |
8
|
expcom |
⊢ ( 𝑓 ∈ 𝐴 → ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ) |
| 67 |
65 66
|
vtoclga |
⊢ ( ( 𝑋 ‘ 0 ) ∈ 𝐴 → ( 𝜑 → ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) |
| 68 |
63 67
|
mpcom |
⊢ ( 𝜑 → ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) |
| 69 |
68
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ∈ ℂ ) |
| 71 |
49 70
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ∈ ℂ ) |
| 72 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑋 ‘ 𝑖 ) = ( 𝑋 ‘ 0 ) ) |
| 73 |
72
|
fveq1d |
⊢ ( 𝑖 = 0 → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝑖 = 0 → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) |
| 75 |
74
|
sumsn |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ∈ ℂ ) → Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) |
| 76 |
43 71 75
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) |
| 77 |
1 76
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ { 0 } ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ) |
| 78 |
47 77
|
eqtrid |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ) |
| 79 |
1 5 6 8 7 63
|
stoweidlem2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 80 |
78 79
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 0 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 82 |
|
eqidd |
⊢ ( 𝑟 = 𝑡 → 𝐸 = 𝐸 ) |
| 83 |
82
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) = ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) |
| 84 |
83
|
eqcomi |
⊢ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) |
| 85 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 86 |
84 82 85 48
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) = 𝐸 ) |
| 87 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 88 |
1 87
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 90 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 ) |
| 91 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝜑 ) |
| 92 |
|
id |
⊢ ( 𝑥 = 𝐸 → 𝑥 = 𝐸 ) |
| 93 |
92
|
mpteq2dv |
⊢ ( 𝑥 = 𝐸 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ) |
| 94 |
93
|
eleq1d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) ) |
| 95 |
94
|
imbi2d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) ) ) |
| 96 |
6
|
expcom |
⊢ ( 𝑥 ∈ ℝ → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ) |
| 97 |
95 96
|
vtoclga |
⊢ ( 𝐸 ∈ ℝ → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) ) |
| 98 |
7 97
|
mpcom |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) |
| 100 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) |
| 101 |
100
|
oveq2d |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 102 |
101
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 103 |
102
|
eleq1d |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 104 |
103
|
imbi2d |
⊢ ( 𝑔 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 105 |
83
|
eleq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) |
| 106 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) ) |
| 107 |
83
|
fveq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) |
| 108 |
106 107
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) ) |
| 109 |
108
|
oveq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) |
| 110 |
109
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 111 |
110
|
eleq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 112 |
111
|
imbi2d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) → ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 113 |
5
|
3com12 |
⊢ ( ( 𝑓 ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 114 |
113
|
3expib |
⊢ ( 𝑓 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 115 |
112 114
|
vtoclga |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 116 |
105 115
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 117 |
116
|
3impib |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 118 |
117
|
3com13 |
⊢ ( ( 𝑔 ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 119 |
118
|
3expib |
⊢ ( 𝑔 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 120 |
104 119
|
vtoclga |
⊢ ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 121 |
120
|
3impib |
⊢ ( ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 122 |
90 91 99 121
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ 𝐸 ) ‘ 𝑡 ) · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 123 |
89 122
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 124 |
123
|
ad2antll |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 125 |
|
simprrl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → 𝜑 ) |
| 126 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 127 |
|
simprl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝜑 ) |
| 128 |
2
|
ad2antrl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
| 129 |
128
|
nnnn0d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 130 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ℝ ) |
| 132 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 133 |
132
|
nn0red |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℝ ) |
| 134 |
133
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 1 ) ∈ ℝ ) |
| 135 |
2
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 136 |
135
|
ad2antrl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑁 ∈ ℝ ) |
| 137 |
|
lep1 |
⊢ ( 𝑚 ∈ ℝ → 𝑚 ≤ ( 𝑚 + 1 ) ) |
| 138 |
126 130 137
|
3syl |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
| 139 |
|
elfzle2 |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
| 140 |
139
|
ad2antll |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 + 1 ) ≤ 𝑁 ) |
| 141 |
131 134 136 138 140
|
letrd |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ≤ 𝑁 ) |
| 142 |
|
elfz2nn0 |
⊢ ( 𝑚 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑚 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑚 ≤ 𝑁 ) ) |
| 143 |
126 129 141 142
|
syl3anbrc |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → 𝑚 ∈ ( 0 ... 𝑁 ) ) |
| 144 |
126 127 143
|
jca32 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 145 |
144
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) ) |
| 146 |
|
pm3.31 |
⊢ ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 147 |
146
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 148 |
145 147
|
mpd |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 149 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) = ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( 𝑟 = 𝑡 → ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 151 |
150
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 152 |
151
|
eleq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 153 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) ) |
| 154 |
151
|
fveq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) |
| 155 |
153 154
|
eqtrdi |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( 𝑔 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
| 156 |
155
|
oveq2d |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 157 |
156
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 158 |
157
|
eleq1d |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 159 |
158
|
imbi2d |
⊢ ( 𝑔 = ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) → ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 160 |
|
fveq2 |
⊢ ( 𝑟 = 𝑡 → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) = ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 161 |
160
|
oveq2d |
⊢ ( 𝑟 = 𝑡 → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) = ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 162 |
161
|
sumeq2sdv |
⊢ ( 𝑟 = 𝑡 → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 163 |
162
|
cbvmptv |
⊢ ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 164 |
163
|
eleq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 165 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) ) |
| 166 |
163
|
fveq1i |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) |
| 167 |
165 166
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) |
| 168 |
167
|
oveq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) |
| 169 |
168
|
mpteq2dv |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ) |
| 170 |
169
|
eleq1d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 171 |
170
|
imbi2d |
⊢ ( 𝑓 = ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) → ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 172 |
4
|
3com12 |
⊢ ( ( 𝑓 ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 173 |
172
|
3expib |
⊢ ( 𝑓 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 174 |
171 173
|
vtoclga |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 175 |
164 174
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 176 |
175
|
3impib |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ∧ 𝜑 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 177 |
176
|
3com13 |
⊢ ( ( 𝑔 ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 178 |
177
|
3expib |
⊢ ( 𝑔 ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 179 |
159 178
|
vtoclga |
⊢ ( ( 𝑟 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑟 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 180 |
152 179
|
sylbir |
⊢ ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 181 |
180
|
3impib |
⊢ ( ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ∧ 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 182 |
124 125 148 181
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 183 |
|
3anass |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ↔ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) |
| 184 |
183
|
biimpri |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 185 |
184
|
adantl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 186 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ0 |
| 187 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) |
| 188 |
186 1 187
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 189 |
|
simpr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 190 |
|
fzfid |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ... 𝑚 ) ∈ Fin ) |
| 191 |
7
|
3ad2ant2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝐸 ∈ ℝ ) |
| 192 |
191
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝐸 ∈ ℝ ) |
| 193 |
192
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → 𝐸 ∈ ℝ ) |
| 194 |
|
fzelp1 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑚 ) → 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) |
| 195 |
194
|
anim2i |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ) |
| 196 |
|
an32 |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ↔ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) ) |
| 197 |
195 196
|
sylib |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) ) |
| 198 |
3
|
3ad2ant2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) |
| 199 |
198
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) |
| 200 |
|
elfzuz3 |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) |
| 201 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) → ( 0 ... ( 𝑚 + 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 202 |
200 201
|
syl |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 0 ... ( 𝑚 + 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 203 |
202
|
sselda |
⊢ ( ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 204 |
203
|
3ad2antl3 |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝑖 ∈ ( 0 ... 𝑁 ) ) |
| 205 |
199 204
|
ffvelcdmd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( 𝑋 ‘ 𝑖 ) ∈ 𝐴 ) |
| 206 |
|
simpl2 |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝜑 ) |
| 207 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑋 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 208 |
207
|
imbi2d |
⊢ ( 𝑓 = ( 𝑋 ‘ 𝑖 ) → ( ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( 𝜑 → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
| 209 |
208 66
|
vtoclga |
⊢ ( ( 𝑋 ‘ 𝑖 ) ∈ 𝐴 → ( 𝜑 → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 210 |
205 206 209
|
sylc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 211 |
210
|
ffvelcdmda |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 212 |
197 211
|
syl |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 213 |
193 212
|
remulcld |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... 𝑚 ) ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
| 214 |
190 213
|
fsumrecl |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
| 215 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 216 |
215
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 217 |
189 214 216
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 218 |
217
|
oveq1d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 219 |
|
3simpc |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 220 |
219
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
| 221 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
| 222 |
221
|
imbi2d |
⊢ ( 𝑓 = ( 𝑋 ‘ ( 𝑚 + 1 ) ) → ( ( 𝜑 → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( 𝜑 → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) ) ) |
| 223 |
222 66
|
vtoclga |
⊢ ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ∈ 𝐴 → ( 𝜑 → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
| 224 |
90 91 223
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) |
| 225 |
220 224
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) : 𝑇 ⟶ ℝ ) |
| 226 |
225 189
|
ffvelcdmd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) |
| 227 |
192 226
|
remulcld |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ∈ ℝ ) |
| 228 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 229 |
228
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 230 |
189 227 229
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 231 |
230
|
oveq2d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 232 |
|
elfzuz |
⊢ ( ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 233 |
232
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 234 |
233
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 235 |
192
|
adantr |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → 𝐸 ∈ ℝ ) |
| 236 |
211
|
an32s |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 237 |
|
remulcl |
⊢ ( ( 𝐸 ∈ ℝ ∧ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℝ ) |
| 238 |
237
|
recnd |
⊢ ( ( 𝐸 ∈ ℝ ∧ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℂ ) |
| 239 |
235 236 238
|
syl2anc |
⊢ ( ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ ℂ ) |
| 240 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑋 ‘ 𝑖 ) = ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) |
| 241 |
240
|
fveq1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) |
| 242 |
241
|
oveq2d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) |
| 243 |
234 239 242
|
fsumm1 |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( Σ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 244 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
| 245 |
244
|
3ad2ant1 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝑚 ∈ ℂ ) |
| 246 |
245
|
adantr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 𝑚 ∈ ℂ ) |
| 247 |
|
1cnd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → 1 ∈ ℂ ) |
| 248 |
246 247
|
pncand |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 249 |
248
|
oveq2d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) = ( 0 ... 𝑚 ) ) |
| 250 |
249
|
sumeq1d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 251 |
250
|
oveq1d |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → ( Σ 𝑖 ∈ ( 0 ... ( ( 𝑚 + 1 ) − 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 252 |
243 251
|
eqtrd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) + ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 253 |
218 231 252
|
3eqtr4rd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) |
| 254 |
188 253
|
mpteq2da |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) |
| 255 |
254
|
eleq1d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 256 |
185 255
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( 𝐸 · ( ( 𝑋 ‘ ( 𝑚 + 1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 257 |
182 256
|
mpbird |
⊢ ( ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ∧ ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 258 |
257
|
exp32 |
⊢ ( ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) → ( 𝑚 ∈ ℕ0 → ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 259 |
258
|
pm2.86i |
⊢ ( 𝑚 ∈ ℕ0 → ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑚 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) → ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... ( 𝑚 + 1 ) ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) ) |
| 260 |
21 28 35 42 81 259
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝜑 ∧ 𝑁 ∈ ( 0 ... 𝑁 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) ) |
| 261 |
9 14 260
|
sylc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 0 ... 𝑁 ) ( 𝐸 · ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |