Metamath Proof Explorer


Theorem stoweidlem18

Description: This theorem proves Lemma 2 in BrosowskiDeutsh p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem18.1 𝑡 𝐷
stoweidlem18.2 𝑡 𝜑
stoweidlem18.3 𝐹 = ( 𝑡𝑇 ↦ 1 )
stoweidlem18.4 𝑇 = 𝐽
stoweidlem18.5 ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝑡𝑇𝑎 ) ∈ 𝐴 )
stoweidlem18.6 ( 𝜑𝐵 ∈ ( Clsd ‘ 𝐽 ) )
stoweidlem18.7 ( 𝜑𝐸 ∈ ℝ+ )
stoweidlem18.8 ( 𝜑𝐷 = ∅ )
Assertion stoweidlem18 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem18.1 𝑡 𝐷
2 stoweidlem18.2 𝑡 𝜑
3 stoweidlem18.3 𝐹 = ( 𝑡𝑇 ↦ 1 )
4 stoweidlem18.4 𝑇 = 𝐽
5 stoweidlem18.5 ( ( 𝜑𝑎 ∈ ℝ ) → ( 𝑡𝑇𝑎 ) ∈ 𝐴 )
6 stoweidlem18.6 ( 𝜑𝐵 ∈ ( Clsd ‘ 𝐽 ) )
7 stoweidlem18.7 ( 𝜑𝐸 ∈ ℝ+ )
8 stoweidlem18.8 ( 𝜑𝐷 = ∅ )
9 1re 1 ∈ ℝ
10 5 stoweidlem4 ( ( 𝜑 ∧ 1 ∈ ℝ ) → ( 𝑡𝑇 ↦ 1 ) ∈ 𝐴 )
11 9 10 mpan2 ( 𝜑 → ( 𝑡𝑇 ↦ 1 ) ∈ 𝐴 )
12 3 11 eqeltrid ( 𝜑𝐹𝐴 )
13 0le1 0 ≤ 1
14 simpr ( ( 𝜑𝑡𝑇 ) → 𝑡𝑇 )
15 3 fvmpt2 ( ( 𝑡𝑇 ∧ 1 ∈ ℝ ) → ( 𝐹𝑡 ) = 1 )
16 14 9 15 sylancl ( ( 𝜑𝑡𝑇 ) → ( 𝐹𝑡 ) = 1 )
17 13 16 breqtrrid ( ( 𝜑𝑡𝑇 ) → 0 ≤ ( 𝐹𝑡 ) )
18 1le1 1 ≤ 1
19 16 18 eqbrtrdi ( ( 𝜑𝑡𝑇 ) → ( 𝐹𝑡 ) ≤ 1 )
20 17 19 jca ( ( 𝜑𝑡𝑇 ) → ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) )
21 20 ex ( 𝜑 → ( 𝑡𝑇 → ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) ) )
22 2 21 ralrimi ( 𝜑 → ∀ 𝑡𝑇 ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) )
23 nfcv 𝑡
24 1 23 nfeq 𝑡 𝐷 = ∅
25 24 rzalf ( 𝐷 = ∅ → ∀ 𝑡𝐷 ( 𝐹𝑡 ) < 𝐸 )
26 8 25 syl ( 𝜑 → ∀ 𝑡𝐷 ( 𝐹𝑡 ) < 𝐸 )
27 1red ( 𝜑 → 1 ∈ ℝ )
28 27 7 ltsubrpd ( 𝜑 → ( 1 − 𝐸 ) < 1 )
29 28 adantr ( ( 𝜑𝑡𝐵 ) → ( 1 − 𝐸 ) < 1 )
30 4 cldss ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵𝑇 )
31 6 30 syl ( 𝜑𝐵𝑇 )
32 31 sselda ( ( 𝜑𝑡𝐵 ) → 𝑡𝑇 )
33 32 9 15 sylancl ( ( 𝜑𝑡𝐵 ) → ( 𝐹𝑡 ) = 1 )
34 29 33 breqtrrd ( ( 𝜑𝑡𝐵 ) → ( 1 − 𝐸 ) < ( 𝐹𝑡 ) )
35 34 ex ( 𝜑 → ( 𝑡𝐵 → ( 1 − 𝐸 ) < ( 𝐹𝑡 ) ) )
36 2 35 ralrimi ( 𝜑 → ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝐹𝑡 ) )
37 nfcv 𝑡 𝑥
38 nfmpt1 𝑡 ( 𝑡𝑇 ↦ 1 )
39 3 38 nfcxfr 𝑡 𝐹
40 37 39 nfeq 𝑡 𝑥 = 𝐹
41 fveq1 ( 𝑥 = 𝐹 → ( 𝑥𝑡 ) = ( 𝐹𝑡 ) )
42 41 breq2d ( 𝑥 = 𝐹 → ( 0 ≤ ( 𝑥𝑡 ) ↔ 0 ≤ ( 𝐹𝑡 ) ) )
43 41 breq1d ( 𝑥 = 𝐹 → ( ( 𝑥𝑡 ) ≤ 1 ↔ ( 𝐹𝑡 ) ≤ 1 ) )
44 42 43 anbi12d ( 𝑥 = 𝐹 → ( ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) ) )
45 40 44 ralbid ( 𝑥 = 𝐹 → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) ) )
46 41 breq1d ( 𝑥 = 𝐹 → ( ( 𝑥𝑡 ) < 𝐸 ↔ ( 𝐹𝑡 ) < 𝐸 ) )
47 40 46 ralbid ( 𝑥 = 𝐹 → ( ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ↔ ∀ 𝑡𝐷 ( 𝐹𝑡 ) < 𝐸 ) )
48 41 breq2d ( 𝑥 = 𝐹 → ( ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ↔ ( 1 − 𝐸 ) < ( 𝐹𝑡 ) ) )
49 40 48 ralbid ( 𝑥 = 𝐹 → ( ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ↔ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝐹𝑡 ) ) )
50 45 47 49 3anbi123d ( 𝑥 = 𝐹 → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝐹𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝐹𝑡 ) ) ) )
51 50 rspcev ( ( 𝐹𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝐹𝑡 ) ∧ ( 𝐹𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝐹𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝐹𝑡 ) ) ) → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )
52 12 22 26 36 51 syl13anc ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑥𝑡 ) ∧ ( 𝑥𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝐷 ( 𝑥𝑡 ) < 𝐸 ∧ ∀ 𝑡𝐵 ( 1 − 𝐸 ) < ( 𝑥𝑡 ) ) )