| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem18.1 |
⊢ Ⅎ 𝑡 𝐷 |
| 2 |
|
stoweidlem18.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem18.3 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ 1 ) |
| 4 |
|
stoweidlem18.4 |
⊢ 𝑇 = ∪ 𝐽 |
| 5 |
|
stoweidlem18.5 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑎 ) ∈ 𝐴 ) |
| 6 |
|
stoweidlem18.6 |
⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) |
| 7 |
|
stoweidlem18.7 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 8 |
|
stoweidlem18.8 |
⊢ ( 𝜑 → 𝐷 = ∅ ) |
| 9 |
|
1re |
⊢ 1 ∈ ℝ |
| 10 |
5
|
stoweidlem4 |
⊢ ( ( 𝜑 ∧ 1 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
| 11 |
9 10
|
mpan2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
| 12 |
3 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
| 13 |
|
0le1 |
⊢ 0 ≤ 1 |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 15 |
3
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ 1 ∈ ℝ ) → ( 𝐹 ‘ 𝑡 ) = 1 ) |
| 16 |
14 9 15
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) = 1 ) |
| 17 |
13 16
|
breqtrrid |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 0 ≤ ( 𝐹 ‘ 𝑡 ) ) |
| 18 |
|
1le1 |
⊢ 1 ≤ 1 |
| 19 |
16 18
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ≤ 1 ) |
| 20 |
17 19
|
jca |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ) |
| 21 |
20
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 → ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 22 |
2 21
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ) |
| 23 |
|
nfcv |
⊢ Ⅎ 𝑡 ∅ |
| 24 |
1 23
|
nfeq |
⊢ Ⅎ 𝑡 𝐷 = ∅ |
| 25 |
24
|
rzalf |
⊢ ( 𝐷 = ∅ → ∀ 𝑡 ∈ 𝐷 ( 𝐹 ‘ 𝑡 ) < 𝐸 ) |
| 26 |
8 25
|
syl |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐷 ( 𝐹 ‘ 𝑡 ) < 𝐸 ) |
| 27 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 28 |
27 7
|
ltsubrpd |
⊢ ( 𝜑 → ( 1 − 𝐸 ) < 1 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) < 1 ) |
| 30 |
4
|
cldss |
⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵 ⊆ 𝑇 ) |
| 31 |
6 30
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
| 32 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → 𝑡 ∈ 𝑇 ) |
| 33 |
32 9 15
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑡 ) = 1 ) |
| 34 |
29 33
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝐵 ) → ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) |
| 35 |
34
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝐵 → ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) ) |
| 36 |
2 35
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑥 |
| 38 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ 1 ) |
| 39 |
3 38
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐹 |
| 40 |
37 39
|
nfeq |
⊢ Ⅎ 𝑡 𝑥 = 𝐹 |
| 41 |
|
fveq1 |
⊢ ( 𝑥 = 𝐹 → ( 𝑥 ‘ 𝑡 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 42 |
41
|
breq2d |
⊢ ( 𝑥 = 𝐹 → ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ↔ 0 ≤ ( 𝐹 ‘ 𝑡 ) ) ) |
| 43 |
41
|
breq1d |
⊢ ( 𝑥 = 𝐹 → ( ( 𝑥 ‘ 𝑡 ) ≤ 1 ↔ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ) |
| 44 |
42 43
|
anbi12d |
⊢ ( 𝑥 = 𝐹 → ( ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 45 |
40 44
|
ralbid |
⊢ ( 𝑥 = 𝐹 → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ) ) |
| 46 |
41
|
breq1d |
⊢ ( 𝑥 = 𝐹 → ( ( 𝑥 ‘ 𝑡 ) < 𝐸 ↔ ( 𝐹 ‘ 𝑡 ) < 𝐸 ) ) |
| 47 |
40 46
|
ralbid |
⊢ ( 𝑥 = 𝐹 → ( ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ↔ ∀ 𝑡 ∈ 𝐷 ( 𝐹 ‘ 𝑡 ) < 𝐸 ) ) |
| 48 |
41
|
breq2d |
⊢ ( 𝑥 = 𝐹 → ( ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ↔ ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) ) |
| 49 |
40 48
|
ralbid |
⊢ ( 𝑥 = 𝐹 → ( ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) ) |
| 50 |
45 47 49
|
3anbi123d |
⊢ ( 𝑥 = 𝐹 → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝐹 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) ) ) |
| 51 |
50
|
rspcev |
⊢ ( ( 𝐹 ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝐹 ‘ 𝑡 ) ∧ ( 𝐹 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝐹 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝐹 ‘ 𝑡 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |
| 52 |
12 22 26 36 51
|
syl13anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( 𝑥 ‘ 𝑡 ) ∧ ( 𝑥 ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝐷 ( 𝑥 ‘ 𝑡 ) < 𝐸 ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − 𝐸 ) < ( 𝑥 ‘ 𝑡 ) ) ) |