Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem19.1 |
⊢ Ⅎ 𝑡 𝐹 |
2 |
|
stoweidlem19.2 |
⊢ Ⅎ 𝑡 𝜑 |
3 |
|
stoweidlem19.3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
4 |
|
stoweidlem19.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) · ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
5 |
|
stoweidlem19.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
6 |
|
stoweidlem19.6 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |
7 |
|
stoweidlem19.7 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
8 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑛 = 0 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ∈ 𝐴 ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ∈ 𝐴 ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) |
13 |
12
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) |
17 |
16
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) ∈ 𝐴 ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) ∈ 𝐴 ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) |
21 |
20
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ 𝐴 ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑛 ) ) ∈ 𝐴 ) ↔ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ 𝐴 ) ) ) |
24 |
6
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐹 ∈ 𝐴 ) ) |
25 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ 𝐴 ↔ 𝐹 ∈ 𝐴 ) ) |
26 |
25
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐹 ∈ 𝐴 ) ) ) |
27 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝐹 : 𝑇 ⟶ ℝ ) ) |
28 |
26 27
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ) → 𝐹 : 𝑇 ⟶ ℝ ) ) ) |
29 |
28 3
|
vtoclg |
⊢ ( 𝐹 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐹 ∈ 𝐴 ) → 𝐹 : 𝑇 ⟶ ℝ ) ) |
30 |
6 24 29
|
sylc |
⊢ ( 𝜑 → 𝐹 : 𝑇 ⟶ ℝ ) |
31 |
30
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
32 |
|
recn |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ℝ → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
33 |
|
exp0 |
⊢ ( ( 𝐹 ‘ 𝑡 ) ∈ ℂ → ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) = 1 ) |
34 |
31 32 33
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) = 1 ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 1 = ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) |
36 |
2 35
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ) |
37 |
|
1re |
⊢ 1 ∈ ℝ |
38 |
5
|
stoweidlem4 |
⊢ ( ( 𝜑 ∧ 1 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
39 |
37 38
|
mpan2 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ 1 ) ∈ 𝐴 ) |
40 |
36 39
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 0 ) ) ∈ 𝐴 ) |
41 |
|
simpr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) ∧ 𝜑 ) → 𝜑 ) |
42 |
|
simpll |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) ∧ 𝜑 ) → 𝑚 ∈ ℕ0 ) |
43 |
|
simplr |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) ∧ 𝜑 ) → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) |
44 |
41 43
|
mpd |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) ∧ 𝜑 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) |
45 |
|
nfv |
⊢ Ⅎ 𝑡 𝑚 ∈ ℕ0 |
46 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) |
47 |
46
|
nfel1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 |
48 |
2 45 47
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) |
49 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
50 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
51 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
52 |
49 50 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℂ ) |
53 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑚 ∈ ℕ0 ) |
54 |
52 53
|
expp1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) = ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
55 |
48 54
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) · ( 𝐹 ‘ 𝑡 ) ) ) ) |
56 |
31
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ 𝑡 ) ∈ ℝ ) |
57 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇 ) → 𝑚 ∈ ℕ0 ) |
58 |
56 57
|
reexpcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ∈ ℝ ) |
59 |
49 53 50 58
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ∈ ℝ ) |
60 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) |
61 |
60
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) = ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) |
62 |
61
|
eqcomd |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) = ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) ) |
63 |
50 59 62
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) = ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) ) |
64 |
63
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) · ( 𝐹 ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) |
65 |
48 64
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) · ( 𝐹 ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) ) |
66 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → 𝐹 ∈ 𝐴 ) |
67 |
46
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑓 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) |
68 |
1
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑔 = 𝐹 |
69 |
67 68 4
|
stoweidlem6 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ∧ 𝐹 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
70 |
66 69
|
mpd3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
71 |
70
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ‘ 𝑡 ) · ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
72 |
65 71
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) · ( 𝐹 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
73 |
55 72
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) ∈ 𝐴 ) |
74 |
41 42 44 73
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ0 ∧ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) ) ∧ 𝜑 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) ∈ 𝐴 ) |
75 |
74
|
exp31 |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑚 ) ) ∈ 𝐴 ) → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ ( 𝑚 + 1 ) ) ) ∈ 𝐴 ) ) ) |
76 |
11 15 19 23 40 75
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ 𝐴 ) ) |
77 |
7 76
|
mpcom |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐹 ‘ 𝑡 ) ↑ 𝑁 ) ) ∈ 𝐴 ) |