| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem20.1 |
⊢ Ⅎ 𝑡 𝜑 |
| 2 |
|
stoweidlem20.2 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 3 |
|
stoweidlem20.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
stoweidlem20.4 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 5 |
|
stoweidlem20.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 6 |
|
stoweidlem20.6 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 7 |
3
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 8 |
7
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
| 9 |
8
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 ∈ ℕ ↔ 𝑀 ∈ ℕ ) ) |
| 11 |
|
breq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀 ) ) |
| 12 |
11
|
anbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 1 ... 𝑛 ) = ( 1 ... 𝑀 ) ) |
| 14 |
13
|
sumeq1d |
⊢ ( 𝑛 = 𝑀 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 15 |
14
|
mpteq2dv |
⊢ ( 𝑛 = 𝑀 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 17 |
12 16
|
imbi12d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 18 |
10 17
|
imbi12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑛 ∈ ℕ → ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ↔ ( 𝑀 ∈ ℕ → ( ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) ) |
| 19 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ≤ 𝑀 ↔ 1 ≤ 𝑀 ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 1 ≤ 𝑀 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 ... 𝑥 ) = ( 1 ... 1 ) ) |
| 22 |
21
|
sumeq1d |
⊢ ( 𝑥 = 1 → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 23 |
22
|
mpteq2dv |
⊢ ( 𝑥 = 1 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 25 |
20 24
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 1 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 26 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑀 ↔ 𝑦 ≤ 𝑀 ) ) |
| 27 |
26
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 ... 𝑥 ) = ( 1 ... 𝑦 ) ) |
| 29 |
28
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 30 |
29
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 31 |
30
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 32 |
27 31
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 33 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ≤ 𝑀 ↔ ( 𝑦 + 1 ) ≤ 𝑀 ) ) |
| 34 |
33
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 ... 𝑥 ) = ( 1 ... ( 𝑦 + 1 ) ) ) |
| 36 |
35
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 37 |
36
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 39 |
34 38
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 40 |
|
breq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ≤ 𝑀 ↔ 𝑛 ≤ 𝑀 ) ) |
| 41 |
40
|
anbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 1 ... 𝑥 ) = ( 1 ... 𝑛 ) ) |
| 43 |
42
|
sumeq1d |
⊢ ( 𝑥 = 𝑛 → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 44 |
43
|
mpteq2dv |
⊢ ( 𝑥 = 𝑛 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 45 |
44
|
eleq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 46 |
41 45
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 47 |
|
1z |
⊢ 1 ∈ ℤ |
| 48 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 49 |
3 48
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 50 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑀 ) ) |
| 51 |
49 50
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
| 52 |
4 51
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝐴 ) |
| 53 |
52
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) ) |
| 54 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) ) |
| 55 |
54
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) ) ) |
| 56 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) |
| 57 |
55 56
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) ) |
| 58 |
57 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ 1 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) |
| 59 |
52 53 58
|
sylc |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) |
| 60 |
59
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ∈ ℝ ) |
| 61 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ∈ ℂ ) |
| 62 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 1 ) ) |
| 63 |
62
|
fveq1d |
⊢ ( 𝑖 = 1 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) |
| 64 |
63
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ∈ ℂ ) → Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) |
| 65 |
47 61 64
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) |
| 66 |
1 65
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) ) |
| 67 |
59
|
feqmptd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) ) |
| 68 |
66 67
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐺 ‘ 1 ) ) |
| 69 |
68 52
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 71 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → 𝜑 ) |
| 72 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → 𝑦 ∈ ℕ ) |
| 73 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
| 74 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝜑 ) |
| 75 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 76 |
75
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑦 ∈ ℝ ) |
| 77 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 1 ∈ ℝ ) |
| 78 |
76 77
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 79 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℕ ) |
| 80 |
79
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 81 |
76
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑦 ≤ ( 𝑦 + 1 ) ) |
| 82 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
| 83 |
76 78 80 81 82
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑦 ≤ 𝑀 ) |
| 84 |
74 83
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) ) |
| 85 |
71 72 73 84
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) ) |
| 86 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 87 |
85 86
|
mpd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 88 |
|
nfv |
⊢ Ⅎ 𝑡 𝑦 ∈ ℕ |
| 89 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑦 + 1 ) ≤ 𝑀 |
| 90 |
1 88 89
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) |
| 91 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑦 ∈ ℕ ) |
| 92 |
91 48
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 93 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝜑 ) |
| 94 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 1 ∈ ℤ ) |
| 95 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 96 |
95
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 97 |
96
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 98 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑖 ∈ ℤ ) |
| 99 |
98
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 100 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 1 ≤ 𝑖 ) |
| 101 |
100
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 1 ≤ 𝑖 ) |
| 102 |
98
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑖 ∈ ℝ ) |
| 103 |
102
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 104 |
78
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 105 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 106 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
| 107 |
106
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
| 108 |
|
simpll3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
| 109 |
103 104 105 107 108
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
| 110 |
94 97 99 101 109
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 111 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑡 ∈ 𝑇 ) |
| 112 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) |
| 113 |
112
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) |
| 114 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
| 115 |
114 113
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 116 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) |
| 117 |
116
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) ) |
| 118 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 119 |
117 118
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
| 120 |
119 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
| 121 |
113 115 120
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
| 122 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 123 |
121 122
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 124 |
123
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℂ ) |
| 125 |
93 110 111 124
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℂ ) |
| 126 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑦 + 1 ) ) ) |
| 127 |
126
|
fveq1d |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
| 128 |
92 125 127
|
fsump1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
| 129 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
| 130 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 1 ... 𝑦 ) ∈ Fin ) |
| 131 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝜑 ) |
| 132 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 1 ∈ ℤ ) |
| 133 |
96
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑀 ∈ ℤ ) |
| 134 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 𝑖 ∈ ℤ ) |
| 135 |
134
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ∈ ℤ ) |
| 136 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 1 ≤ 𝑖 ) |
| 137 |
136
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 1 ≤ 𝑖 ) |
| 138 |
134
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 𝑖 ∈ ℝ ) |
| 139 |
138
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ∈ ℝ ) |
| 140 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 141 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑀 ∈ ℝ ) |
| 142 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 143 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 𝑖 ≤ 𝑦 ) |
| 144 |
143
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ 𝑦 ) |
| 145 |
|
letrp1 |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑖 ≤ 𝑦 ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
| 146 |
139 142 144 145
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
| 147 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
| 148 |
139 140 141 146 147
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ 𝑀 ) |
| 149 |
148
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ 𝑀 ) |
| 150 |
132 133 135 137 149
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 151 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑡 ∈ 𝑇 ) |
| 152 |
131 150 151 123
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 153 |
130 152
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
| 154 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 155 |
154
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 156 |
129 153 155
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 157 |
156
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
| 158 |
128 157
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
| 159 |
90 158
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 161 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 1 ∈ ℤ ) |
| 162 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
| 163 |
162
|
nnzd |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℤ ) |
| 164 |
163
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
| 165 |
162
|
nnge1d |
⊢ ( 𝑦 ∈ ℕ → 1 ≤ ( 𝑦 + 1 ) ) |
| 166 |
165
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 1 ≤ ( 𝑦 + 1 ) ) |
| 167 |
161 96 164 166 82
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
| 168 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) |
| 169 |
74 167 168
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) |
| 170 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) ) |
| 171 |
170
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) ) ) |
| 172 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
| 173 |
171 172
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) ) ) |
| 174 |
173 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
| 175 |
174
|
anabsi7 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) |
| 176 |
74 169 175
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) |
| 177 |
176
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) |
| 178 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
| 179 |
178
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) = ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
| 180 |
129 177 179
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) = ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
| 181 |
180
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
| 182 |
90 181
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 183 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
| 184 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → 𝜑 ) |
| 185 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 186 |
167
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
| 187 |
175
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
| 188 |
168 187
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
| 189 |
188 168
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 190 |
184 186 189
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 191 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 192 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
| 193 |
5 191 192
|
stoweidlem8 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 194 |
184 185 190 193
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 195 |
183 194
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
| 196 |
160 195
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 197 |
71 72 73 87 196
|
syl31anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 198 |
197
|
exp31 |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 199 |
25 32 39 46 70 198
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
| 200 |
18 199
|
vtoclg |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℕ → ( ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
| 201 |
3 3 9 200
|
syl3c |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
| 202 |
2 201
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |