Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem20.1 |
⊢ Ⅎ 𝑡 𝜑 |
2 |
|
stoweidlem20.2 |
⊢ 𝐹 = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
3 |
|
stoweidlem20.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
4 |
|
stoweidlem20.4 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
5 |
|
stoweidlem20.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
6 |
|
stoweidlem20.6 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
7 |
3
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
8 |
7
|
leidd |
⊢ ( 𝜑 → 𝑀 ≤ 𝑀 ) |
9 |
8
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) ) |
10 |
|
eleq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 ∈ ℕ ↔ 𝑀 ∈ ℕ ) ) |
11 |
|
breq1 |
⊢ ( 𝑛 = 𝑀 → ( 𝑛 ≤ 𝑀 ↔ 𝑀 ≤ 𝑀 ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 1 ... 𝑛 ) = ( 1 ... 𝑀 ) ) |
14 |
13
|
sumeq1d |
⊢ ( 𝑛 = 𝑀 → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑛 = 𝑀 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
17 |
12 16
|
imbi12d |
⊢ ( 𝑛 = 𝑀 → ( ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
18 |
10 17
|
imbi12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝑛 ∈ ℕ → ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ↔ ( 𝑀 ∈ ℕ → ( ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) ) |
19 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 ≤ 𝑀 ↔ 1 ≤ 𝑀 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 1 ≤ 𝑀 ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 1 ... 𝑥 ) = ( 1 ... 1 ) ) |
22 |
21
|
sumeq1d |
⊢ ( 𝑥 = 1 → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
23 |
22
|
mpteq2dv |
⊢ ( 𝑥 = 1 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
25 |
20 24
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 1 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
26 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≤ 𝑀 ↔ 𝑦 ≤ 𝑀 ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 ... 𝑥 ) = ( 1 ... 𝑦 ) ) |
29 |
28
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
30 |
29
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
31 |
30
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
32 |
27 31
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
33 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ≤ 𝑀 ↔ ( 𝑦 + 1 ) ≤ 𝑀 ) ) |
34 |
33
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 ... 𝑥 ) = ( 1 ... ( 𝑦 + 1 ) ) ) |
36 |
35
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
37 |
36
|
mpteq2dv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
38 |
37
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
39 |
34 38
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
40 |
|
breq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ≤ 𝑀 ↔ 𝑛 ≤ 𝑀 ) ) |
41 |
40
|
anbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) ↔ ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 1 ... 𝑥 ) = ( 1 ... 𝑛 ) ) |
43 |
42
|
sumeq1d |
⊢ ( 𝑥 = 𝑛 → Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
44 |
43
|
mpteq2dv |
⊢ ( 𝑥 = 𝑛 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
45 |
44
|
eleq1d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
46 |
41 45
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝜑 ∧ 𝑥 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑥 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
47 |
|
1z |
⊢ 1 ∈ ℤ |
48 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
49 |
3 48
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
50 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑀 ) ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
52 |
4 51
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝐴 ) |
53 |
52
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) ) |
54 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) ) |
55 |
54
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) ) ) |
56 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) |
57 |
55 56
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ 1 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) ) |
58 |
57 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ 1 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ 1 ) ∈ 𝐴 ) → ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) |
59 |
52 53 58
|
sylc |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) : 𝑇 ⟶ ℝ ) |
60 |
59
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ∈ ℝ ) |
61 |
60
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ∈ ℂ ) |
62 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 1 ) ) |
63 |
62
|
fveq1d |
⊢ ( 𝑖 = 1 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) |
64 |
63
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ∈ ℂ ) → Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) |
65 |
47 61 64
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) |
66 |
1 65
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) ) |
67 |
59
|
feqmptd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 1 ) ‘ 𝑡 ) ) ) |
68 |
66 67
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝐺 ‘ 1 ) ) |
69 |
68 52
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 1 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
71 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → 𝜑 ) |
72 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → 𝑦 ∈ ℕ ) |
73 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
74 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝜑 ) |
75 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
76 |
75
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑦 ∈ ℝ ) |
77 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 1 ∈ ℝ ) |
78 |
76 77
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℝ ) |
79 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℕ ) |
80 |
79
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
81 |
76
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑦 ≤ ( 𝑦 + 1 ) ) |
82 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
83 |
76 78 80 81 82
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑦 ≤ 𝑀 ) |
84 |
74 83
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) ) |
85 |
71 72 73 84
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) ) |
86 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
87 |
85 86
|
mpd |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
88 |
|
nfv |
⊢ Ⅎ 𝑡 𝑦 ∈ ℕ |
89 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑦 + 1 ) ≤ 𝑀 |
90 |
1 88 89
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) |
91 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑦 ∈ ℕ ) |
92 |
91 48
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
93 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝜑 ) |
94 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 1 ∈ ℤ ) |
95 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
96 |
95
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 𝑀 ∈ ℤ ) |
97 |
96
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
98 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑖 ∈ ℤ ) |
99 |
98
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
100 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 1 ≤ 𝑖 ) |
101 |
100
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 1 ≤ 𝑖 ) |
102 |
98
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑖 ∈ ℝ ) |
103 |
102
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ∈ ℝ ) |
104 |
78
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
105 |
80
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑀 ∈ ℝ ) |
106 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
107 |
106
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
108 |
|
simpll3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
109 |
103 104 105 107 108
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ≤ 𝑀 ) |
110 |
94 97 99 101 109
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
111 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑡 ∈ 𝑇 ) |
112 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) |
113 |
112
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) |
114 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝜑 ) |
115 |
114 113
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) |
116 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) |
117 |
116
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) ) ) |
118 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
119 |
117 118
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ 𝑖 ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) |
120 |
119 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑖 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) |
121 |
113 115 120
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) |
122 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
123 |
121 122
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
124 |
123
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℂ ) |
125 |
93 110 111 124
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℂ ) |
126 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑦 + 1 ) ) ) |
127 |
126
|
fveq1d |
⊢ ( 𝑖 = ( 𝑦 + 1 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
128 |
92 125 127
|
fsump1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
129 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
130 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( 1 ... 𝑦 ) ∈ Fin ) |
131 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝜑 ) |
132 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 1 ∈ ℤ ) |
133 |
96
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑀 ∈ ℤ ) |
134 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 𝑖 ∈ ℤ ) |
135 |
134
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ∈ ℤ ) |
136 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 1 ≤ 𝑖 ) |
137 |
136
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 1 ≤ 𝑖 ) |
138 |
134
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 𝑖 ∈ ℝ ) |
139 |
138
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ∈ ℝ ) |
140 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
141 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑀 ∈ ℝ ) |
142 |
76
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑦 ∈ ℝ ) |
143 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑦 ) → 𝑖 ≤ 𝑦 ) |
144 |
143
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ 𝑦 ) |
145 |
|
letrp1 |
⊢ ( ( 𝑖 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑖 ≤ 𝑦 ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
146 |
139 142 144 145
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ ( 𝑦 + 1 ) ) |
147 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → ( 𝑦 + 1 ) ≤ 𝑀 ) |
148 |
139 140 141 146 147
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ 𝑀 ) |
149 |
148
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ≤ 𝑀 ) |
150 |
132 133 135 137 149
|
elfzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
151 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → 𝑡 ∈ 𝑇 ) |
152 |
131 150 151 123
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑦 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
153 |
130 152
|
fsumrecl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) |
154 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
155 |
154
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
156 |
129 153 155
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
157 |
156
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
158 |
128 157
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
159 |
90 158
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
161 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 1 ∈ ℤ ) |
162 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
163 |
162
|
nnzd |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℤ ) |
164 |
163
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ∈ ℤ ) |
165 |
162
|
nnge1d |
⊢ ( 𝑦 ∈ ℕ → 1 ≤ ( 𝑦 + 1 ) ) |
166 |
165
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → 1 ≤ ( 𝑦 + 1 ) ) |
167 |
161 96 164 166 82
|
elfzd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
168 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) |
169 |
74 167 168
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) |
170 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( 𝑓 ∈ 𝐴 ↔ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) ) |
171 |
170
|
anbi2d |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) ) ) |
172 |
|
feq1 |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
173 |
171 172
|
imbi12d |
⊢ ( 𝑓 = ( 𝐺 ‘ ( 𝑦 + 1 ) ) → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) ) ) |
174 |
173 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 → ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) ) |
175 |
174
|
anabsi7 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) |
176 |
74 169 175
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) : 𝑇 ⟶ ℝ ) |
177 |
176
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) |
178 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
179 |
178
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) = ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
180 |
129 177 179
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) = ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
181 |
180
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ 𝑡 ∈ 𝑇 ) → ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) = ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
182 |
90 181
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
183 |
182
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ) |
184 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → 𝜑 ) |
185 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
186 |
167
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
187 |
175
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ( 𝑦 + 1 ) ) ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
188 |
168 187
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝑦 + 1 ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) |
189 |
188 168
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
190 |
184 186 189
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
191 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) |
192 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) |
193 |
5 191 192
|
stoweidlem8 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ∧ ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
194 |
184 185 190 193
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
195 |
183 194
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑡 ) + ( ( 𝐺 ‘ ( 𝑦 + 1 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
196 |
160 195
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℕ ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ∧ ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
197 |
71 72 73 87 196
|
syl31anc |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ∧ ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
198 |
197
|
exp31 |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝜑 ∧ 𝑦 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑦 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) → ( ( 𝜑 ∧ ( 𝑦 + 1 ) ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
199 |
25 32 39 46 70 198
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝜑 ∧ 𝑛 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) |
200 |
18 199
|
vtoclg |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℕ → ( ( 𝜑 ∧ 𝑀 ≤ 𝑀 ) → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) ) ) |
201 |
3 3 9 200
|
syl3c |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ∈ 𝐴 ) |
202 |
2 201
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝐴 ) |