Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem23.1 |
⊢ Ⅎ 𝑡 𝜑 |
2 |
|
stoweidlem23.2 |
⊢ Ⅎ 𝑡 𝐺 |
3 |
|
stoweidlem23.3 |
⊢ 𝐻 = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
4 |
|
stoweidlem23.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
5 |
|
stoweidlem23.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝑓 ‘ 𝑡 ) + ( 𝑔 ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
6 |
|
stoweidlem23.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) |
7 |
|
stoweidlem23.7 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑇 ) |
8 |
|
stoweidlem23.8 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑇 ) |
9 |
|
stoweidlem23.9 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐴 ) |
10 |
|
stoweidlem23.10 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ≠ ( 𝐺 ‘ 𝑍 ) ) |
11 |
9
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) ) |
12 |
|
eleq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ∈ 𝐴 ↔ 𝐺 ∈ 𝐴 ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) ) ) |
14 |
|
feq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 : 𝑇 ⟶ ℝ ↔ 𝐺 : 𝑇 ⟶ ℝ ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑓 = 𝐺 → ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) → 𝐺 : 𝑇 ⟶ ℝ ) ) ) |
16 |
15 4
|
vtoclg |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ) → 𝐺 : 𝑇 ⟶ ℝ ) ) |
17 |
9 11 16
|
sylc |
⊢ ( 𝜑 → 𝐺 : 𝑇 ⟶ ℝ ) |
18 |
17
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℂ ) |
20 |
17 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑍 ) ∈ ℂ ) |
23 |
19 22
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) + - ( 𝐺 ‘ 𝑍 ) ) = ( ( 𝐺 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
24 |
1 23
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) + - ( 𝐺 ‘ 𝑍 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑍 ) ) ) ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝑡 ∈ 𝑇 ) |
26 |
20
|
renegcld |
⊢ ( 𝜑 → - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) |
28 |
|
eqid |
⊢ ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) = ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) |
29 |
28
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ 𝑇 ∧ - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) → ( ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) = - ( 𝐺 ‘ 𝑍 ) ) |
30 |
25 27 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) = - ( 𝐺 ‘ 𝑍 ) ) |
31 |
30
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) = ( ( 𝐺 ‘ 𝑡 ) + - ( 𝐺 ‘ 𝑍 ) ) ) |
32 |
1 31
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) ) = ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) + - ( 𝐺 ‘ 𝑍 ) ) ) ) |
33 |
26
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) ) |
34 |
|
eleq1 |
⊢ ( 𝑥 = - ( 𝐺 ‘ 𝑍 ) → ( 𝑥 ∈ ℝ ↔ - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑥 = - ( 𝐺 ‘ 𝑍 ) → ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ↔ ( 𝜑 ∧ - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) ) ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑍 |
37 |
2 36
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑍 ) |
38 |
37
|
nfneg |
⊢ Ⅎ 𝑡 - ( 𝐺 ‘ 𝑍 ) |
39 |
38
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑥 = - ( 𝐺 ‘ 𝑍 ) |
40 |
|
simpl |
⊢ ( ( 𝑥 = - ( 𝐺 ‘ 𝑍 ) ∧ 𝑡 ∈ 𝑇 ) → 𝑥 = - ( 𝐺 ‘ 𝑍 ) ) |
41 |
39 40
|
mpteq2da |
⊢ ( 𝑥 = - ( 𝐺 ‘ 𝑍 ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) = ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑥 = - ( 𝐺 ‘ 𝑍 ) → ( ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ↔ ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ∈ 𝐴 ) ) |
43 |
35 42
|
imbi12d |
⊢ ( 𝑥 = - ( 𝐺 ‘ 𝑍 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ∈ 𝐴 ) ) ) |
44 |
43 6
|
vtoclg |
⊢ ( - ( 𝐺 ‘ 𝑍 ) ∈ ℝ → ( ( 𝜑 ∧ - ( 𝐺 ‘ 𝑍 ) ∈ ℝ ) → ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ∈ 𝐴 ) ) |
45 |
26 33 44
|
sylc |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ∈ 𝐴 ) |
46 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) |
47 |
5 2 46
|
stoweidlem8 |
⊢ ( ( 𝜑 ∧ 𝐺 ∈ 𝐴 ∧ ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ∈ 𝐴 ) → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
48 |
9 45 47
|
mpd3an23 |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) + ( ( 𝑡 ∈ 𝑇 ↦ - ( 𝐺 ‘ 𝑍 ) ) ‘ 𝑡 ) ) ) ∈ 𝐴 ) |
49 |
32 48
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) + - ( 𝐺 ‘ 𝑍 ) ) ) ∈ 𝐴 ) |
50 |
24 49
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑡 ∈ 𝑇 ↦ ( ( 𝐺 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑍 ) ) ) ∈ 𝐴 ) |
51 |
3 50
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ 𝐴 ) |
52 |
17 7
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ∈ ℝ ) |
53 |
52
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑆 ) ∈ ℂ ) |
54 |
20
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑍 ) ∈ ℂ ) |
55 |
53 54 10
|
subne0d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) ≠ 0 ) |
56 |
52 20
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) ∈ ℝ ) |
57 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑆 |
58 |
2 57
|
nffv |
⊢ Ⅎ 𝑡 ( 𝐺 ‘ 𝑆 ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑡 − |
60 |
58 59 37
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) |
61 |
|
fveq2 |
⊢ ( 𝑡 = 𝑆 → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑆 ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝑡 = 𝑆 → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑍 ) ) = ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
63 |
57 60 62 3
|
fvmptf |
⊢ ( ( 𝑆 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) ∈ ℝ ) → ( 𝐻 ‘ 𝑆 ) = ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
64 |
7 56 63
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑆 ) = ( ( 𝐺 ‘ 𝑆 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
65 |
20 20
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) ∈ ℝ ) |
66 |
37 59 37
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) |
67 |
|
fveq2 |
⊢ ( 𝑡 = 𝑍 → ( 𝐺 ‘ 𝑡 ) = ( 𝐺 ‘ 𝑍 ) ) |
68 |
67
|
oveq1d |
⊢ ( 𝑡 = 𝑍 → ( ( 𝐺 ‘ 𝑡 ) − ( 𝐺 ‘ 𝑍 ) ) = ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
69 |
36 66 68 3
|
fvmptf |
⊢ ( ( 𝑍 ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) ∈ ℝ ) → ( 𝐻 ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
70 |
8 65 69
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) = ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) ) |
71 |
54
|
subidd |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑍 ) − ( 𝐺 ‘ 𝑍 ) ) = 0 ) |
72 |
70 71
|
eqtrd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑍 ) = 0 ) |
73 |
55 64 72
|
3netr4d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑆 ) ≠ ( 𝐻 ‘ 𝑍 ) ) |
74 |
51 73 72
|
3jca |
⊢ ( 𝜑 → ( 𝐻 ∈ 𝐴 ∧ ( 𝐻 ‘ 𝑆 ) ≠ ( 𝐻 ‘ 𝑍 ) ∧ ( 𝐻 ‘ 𝑍 ) = 0 ) ) |