| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem27.1 |
⊢ 𝐺 = ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 2 |
|
stoweidlem27.2 |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
| 3 |
|
stoweidlem27.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
stoweidlem27.4 |
⊢ ( 𝜑 → 𝑌 Fn ran 𝐺 ) |
| 5 |
|
stoweidlem27.5 |
⊢ ( 𝜑 → ran 𝐺 ∈ V ) |
| 6 |
|
stoweidlem27.6 |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) → ( 𝑌 ‘ 𝑙 ) ∈ 𝑙 ) |
| 7 |
|
stoweidlem27.7 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐺 ) |
| 8 |
|
stoweidlem27.8 |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ⊆ ∪ 𝑋 ) |
| 9 |
|
stoweidlem27.9 |
⊢ Ⅎ 𝑡 𝜑 |
| 10 |
|
stoweidlem27.10 |
⊢ Ⅎ 𝑤 𝜑 |
| 11 |
|
stoweidlem27.11 |
⊢ Ⅎ ℎ 𝑄 |
| 12 |
|
fnex |
⊢ ( ( 𝑌 Fn ran 𝐺 ∧ ran 𝐺 ∈ V ) → 𝑌 ∈ V ) |
| 13 |
4 5 12
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 14 |
|
f1ofn |
⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐺 → 𝐹 Fn ( 1 ... 𝑀 ) ) |
| 15 |
7 14
|
syl |
⊢ ( 𝜑 → 𝐹 Fn ( 1 ... 𝑀 ) ) |
| 16 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 17 |
|
fnex |
⊢ ( ( 𝐹 Fn ( 1 ... 𝑀 ) ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐹 ∈ V ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 19 |
|
coexg |
⊢ ( ( 𝑌 ∈ V ∧ 𝐹 ∈ V ) → ( 𝑌 ∘ 𝐹 ) ∈ V ) |
| 20 |
13 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∘ 𝐹 ) ∈ V ) |
| 21 |
|
f1of |
⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐺 → 𝐹 : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) |
| 22 |
7 21
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) |
| 23 |
|
fnfco |
⊢ ( ( 𝑌 Fn ran 𝐺 ∧ 𝐹 : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) → ( 𝑌 ∘ 𝐹 ) Fn ( 1 ... 𝑀 ) ) |
| 24 |
4 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∘ 𝐹 ) Fn ( 1 ... 𝑀 ) ) |
| 25 |
|
rncoss |
⊢ ran ( 𝑌 ∘ 𝐹 ) ⊆ ran 𝑌 |
| 26 |
|
fvelrnb |
⊢ ( 𝑌 Fn ran 𝐺 → ( 𝑘 ∈ ran 𝑌 ↔ ∃ 𝑙 ∈ ran 𝐺 ( 𝑌 ‘ 𝑙 ) = 𝑘 ) ) |
| 27 |
4 26
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ran 𝑌 ↔ ∃ 𝑙 ∈ ran 𝐺 ( 𝑌 ‘ 𝑙 ) = 𝑘 ) ) |
| 28 |
27
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) → ∃ 𝑙 ∈ ran 𝐺 ( 𝑌 ‘ 𝑙 ) = 𝑘 ) |
| 29 |
|
nfmpt1 |
⊢ Ⅎ 𝑤 ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 30 |
1 29
|
nfcxfr |
⊢ Ⅎ 𝑤 𝐺 |
| 31 |
30
|
nfrn |
⊢ Ⅎ 𝑤 ran 𝐺 |
| 32 |
31
|
nfcri |
⊢ Ⅎ 𝑤 𝑙 ∈ ran 𝐺 |
| 33 |
10 32
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) |
| 34 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ( 𝑌 ‘ 𝑙 ) ∈ 𝑙 ) |
| 35 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 36 |
34 35
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ( 𝑌 ‘ 𝑙 ) ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 37 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑌 ‘ 𝑙 ) |
| 38 |
|
nfv |
⊢ Ⅎ ℎ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } |
| 39 |
|
fveq1 |
⊢ ( ℎ = ( 𝑌 ‘ 𝑙 ) → ( ℎ ‘ 𝑡 ) = ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) ) |
| 40 |
39
|
breq2d |
⊢ ( ℎ = ( 𝑌 ‘ 𝑙 ) → ( 0 < ( ℎ ‘ 𝑡 ) ↔ 0 < ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) ) ) |
| 41 |
40
|
rabbidv |
⊢ ( ℎ = ( 𝑌 ‘ 𝑙 ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) |
| 42 |
41
|
eqeq2d |
⊢ ( ℎ = ( 𝑌 ‘ 𝑙 ) → ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ↔ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) ) |
| 43 |
37 11 38 42
|
elrabf |
⊢ ( ( 𝑌 ‘ 𝑙 ) ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ↔ ( ( 𝑌 ‘ 𝑙 ) ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) ) |
| 44 |
36 43
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ( ( 𝑌 ‘ 𝑙 ) ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( 𝑌 ‘ 𝑙 ) ‘ 𝑡 ) } ) ) |
| 45 |
44
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑋 ) ∧ 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) → ( 𝑌 ‘ 𝑙 ) ∈ 𝑄 ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) → 𝑙 ∈ ran 𝐺 ) |
| 47 |
1
|
elrnmpt |
⊢ ( 𝑙 ∈ ran 𝐺 → ( 𝑙 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑋 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) → ( 𝑙 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑋 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) ) |
| 49 |
46 48
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) → ∃ 𝑤 ∈ 𝑋 𝑙 = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 50 |
33 45 49
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) → ( 𝑌 ‘ 𝑙 ) ∈ 𝑄 ) |
| 51 |
50
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) ∧ 𝑙 ∈ ran 𝐺 ) → ( 𝑌 ‘ 𝑙 ) ∈ 𝑄 ) |
| 52 |
|
eleq1 |
⊢ ( ( 𝑌 ‘ 𝑙 ) = 𝑘 → ( ( 𝑌 ‘ 𝑙 ) ∈ 𝑄 ↔ 𝑘 ∈ 𝑄 ) ) |
| 53 |
51 52
|
syl5ibcom |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) ∧ 𝑙 ∈ ran 𝐺 ) → ( ( 𝑌 ‘ 𝑙 ) = 𝑘 → 𝑘 ∈ 𝑄 ) ) |
| 54 |
53
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) → ( ∃ 𝑙 ∈ ran 𝐺 ( 𝑌 ‘ 𝑙 ) = 𝑘 → ∃ 𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄 ) ) |
| 55 |
28 54
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) → ∃ 𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄 ) |
| 56 |
|
idd |
⊢ ( 𝑙 ∈ ran 𝐺 → ( 𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄 ) ) |
| 57 |
56
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) → ( 𝑙 ∈ ran 𝐺 → ( 𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄 ) ) ) |
| 58 |
57
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) → ( ∃ 𝑙 ∈ ran 𝐺 𝑘 ∈ 𝑄 → 𝑘 ∈ 𝑄 ) ) |
| 59 |
55 58
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ran 𝑌 ) → 𝑘 ∈ 𝑄 ) |
| 60 |
59
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ran 𝑌 → 𝑘 ∈ 𝑄 ) ) |
| 61 |
60
|
ssrdv |
⊢ ( 𝜑 → ran 𝑌 ⊆ 𝑄 ) |
| 62 |
25 61
|
sstrid |
⊢ ( 𝜑 → ran ( 𝑌 ∘ 𝐹 ) ⊆ 𝑄 ) |
| 63 |
|
df-f |
⊢ ( ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ↔ ( ( 𝑌 ∘ 𝐹 ) Fn ( 1 ... 𝑀 ) ∧ ran ( 𝑌 ∘ 𝐹 ) ⊆ 𝑄 ) ) |
| 64 |
24 62 63
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ) |
| 65 |
|
nfv |
⊢ Ⅎ 𝑤 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) |
| 66 |
10 65
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 67 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) |
| 68 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑡 ∈ ∪ 𝑋 ) |
| 69 |
|
eluni |
⊢ ( 𝑡 ∈ ∪ 𝑋 ↔ ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) |
| 70 |
68 69
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ 𝑤 ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) |
| 71 |
1
|
funmpt2 |
⊢ Fun 𝐺 |
| 72 |
1
|
dmeqi |
⊢ dom 𝐺 = dom ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 73 |
11
|
rabexgf |
⊢ ( 𝑄 ∈ V → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 74 |
2 73
|
syl |
⊢ ( 𝜑 → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 76 |
75
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑋 → { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) ) |
| 77 |
10 76
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑋 { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) |
| 78 |
|
dmmptg |
⊢ ( ∀ 𝑤 ∈ 𝑋 { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V → dom ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) = 𝑋 ) |
| 79 |
77 78
|
syl |
⊢ ( 𝜑 → dom ( 𝑤 ∈ 𝑋 ↦ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) = 𝑋 ) |
| 80 |
72 79
|
eqtrid |
⊢ ( 𝜑 → dom 𝐺 = 𝑋 ) |
| 81 |
80
|
eleq2d |
⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝐺 ↔ 𝑤 ∈ 𝑋 ) ) |
| 82 |
81
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ dom 𝐺 ) |
| 83 |
|
fvelrn |
⊢ ( ( Fun 𝐺 ∧ 𝑤 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) |
| 84 |
71 82 83
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) |
| 85 |
84
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) |
| 86 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → 𝐹 : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) |
| 87 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 88 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) = ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 89 |
86 87 88
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) = ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) → ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 91 |
90
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → ( 𝑌 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 92 |
89 91
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) = ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 93 |
|
eleq1 |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( 𝑙 ∈ ran 𝐺 ↔ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ) |
| 94 |
93
|
anbi2d |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ) ) |
| 95 |
|
eleq2 |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝑌 ‘ 𝑙 ) ∈ 𝑙 ↔ ( 𝑌 ‘ 𝑙 ) ∈ ( 𝐺 ‘ 𝑤 ) ) ) |
| 96 |
|
fveq2 |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( 𝑌 ‘ 𝑙 ) = ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ) |
| 97 |
96
|
eleq1d |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝑌 ‘ 𝑙 ) ∈ ( 𝐺 ‘ 𝑤 ) ↔ ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ( 𝐺 ‘ 𝑤 ) ) ) |
| 98 |
95 97
|
bitrd |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( ( 𝑌 ‘ 𝑙 ) ∈ 𝑙 ↔ ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ( 𝐺 ‘ 𝑤 ) ) ) |
| 99 |
94 98
|
imbi12d |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑤 ) → ( ( ( 𝜑 ∧ 𝑙 ∈ ran 𝐺 ) → ( 𝑌 ‘ 𝑙 ) ∈ 𝑙 ) ↔ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ( 𝐺 ‘ 𝑤 ) ) ) ) |
| 100 |
99 6
|
vtoclg |
⊢ ( ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ( 𝐺 ‘ 𝑤 ) ) ) |
| 101 |
100
|
anabsi7 |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ( 𝐺 ‘ 𝑤 ) ) |
| 102 |
101
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → ( 𝑌 ‘ ( 𝐺 ‘ 𝑤 ) ) ∈ ( 𝐺 ‘ 𝑤 ) ) |
| 103 |
92 102
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) → ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) |
| 104 |
|
f1ofo |
⊢ ( 𝐹 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐺 → 𝐹 : ( 1 ... 𝑀 ) –onto→ ran 𝐺 ) |
| 105 |
|
forn |
⊢ ( 𝐹 : ( 1 ... 𝑀 ) –onto→ ran 𝐺 → ran 𝐹 = ran 𝐺 ) |
| 106 |
7 104 105
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = ran 𝐺 ) |
| 107 |
106
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐹 ↔ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) ) |
| 108 |
107
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐹 ) |
| 109 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → 𝐹 Fn ( 1 ... 𝑀 ) ) |
| 110 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( 1 ... 𝑀 ) → ( ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐹 ↔ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 111 |
109 110
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ( ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐹 ↔ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) ) |
| 112 |
108 111
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) ( 𝐹 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 113 |
103 112
|
reximddv |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑤 ) ∈ ran 𝐺 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) |
| 114 |
85 113
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) |
| 115 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → 𝑡 ∈ 𝑤 ) |
| 116 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → 𝑤 ∈ 𝑋 ) |
| 117 |
1
|
fvmpt2 |
⊢ ( ( 𝑤 ∈ 𝑋 ∧ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ∈ V ) → ( 𝐺 ‘ 𝑤 ) = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 118 |
116 75 117
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑤 ) = { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 119 |
118
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) → ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ↔ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) ) |
| 120 |
119
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑋 ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 121 |
120
|
adantlrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ) |
| 122 |
|
nfcv |
⊢ Ⅎ ℎ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) |
| 123 |
|
nfv |
⊢ Ⅎ ℎ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } |
| 124 |
|
fveq1 |
⊢ ( ℎ = ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) → ( ℎ ‘ 𝑡 ) = ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 125 |
124
|
breq2d |
⊢ ( ℎ = ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) → ( 0 < ( ℎ ‘ 𝑡 ) ↔ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 126 |
125
|
rabbidv |
⊢ ( ℎ = ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) → { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) |
| 127 |
126
|
eqeq2d |
⊢ ( ℎ = ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) → ( 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } ↔ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) ) |
| 128 |
122 11 123 127
|
elrabf |
⊢ ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝑄 ∣ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ℎ ‘ 𝑡 ) } } ↔ ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) ) |
| 129 |
121 128
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ 𝑄 ∧ 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) ) |
| 130 |
129
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → 𝑤 = { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) |
| 131 |
115 130
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ) |
| 132 |
|
rabid |
⊢ ( 𝑡 ∈ { 𝑡 ∈ 𝑇 ∣ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) } ↔ ( 𝑡 ∈ 𝑇 ∧ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 133 |
131 132
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → ( 𝑡 ∈ 𝑇 ∧ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 134 |
133
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) ) → 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 135 |
134
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) → 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 136 |
135
|
reximdv |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) → ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ∈ ( 𝐺 ‘ 𝑤 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 137 |
114 136
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 138 |
137
|
ex |
⊢ ( 𝜑 → ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( ( 𝑡 ∈ 𝑤 ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 140 |
66 67 70 139
|
exlimimdd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 141 |
140
|
ex |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 142 |
9 141
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 143 |
3 64 142
|
jca32 |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ ( ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 144 |
|
feq1 |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄 ↔ ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ) ) |
| 145 |
|
fveq1 |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( 𝑞 ‘ 𝑖 ) = ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ) |
| 146 |
145
|
fveq1d |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 147 |
146
|
breq2d |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ↔ 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 148 |
147
|
rexbidv |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ↔ ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 149 |
148
|
ralbidv |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 150 |
144 149
|
anbi12d |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ↔ ( ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 151 |
150
|
anbi2d |
⊢ ( 𝑞 = ( 𝑌 ∘ 𝐹 ) → ( ( 𝑀 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ↔ ( 𝑀 ∈ ℕ ∧ ( ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 152 |
151
|
spcegv |
⊢ ( ( 𝑌 ∘ 𝐹 ) ∈ V → ( ( 𝑀 ∈ ℕ ∧ ( ( 𝑌 ∘ 𝐹 ) : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( ( 𝑌 ∘ 𝐹 ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑞 ( 𝑀 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 153 |
20 143 152
|
sylc |
⊢ ( 𝜑 → ∃ 𝑞 ( 𝑀 ∈ ℕ ∧ ( 𝑞 : ( 1 ... 𝑀 ) ⟶ 𝑄 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ∃ 𝑖 ∈ ( 1 ... 𝑀 ) 0 < ( ( 𝑞 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |