| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem28.1 |
⊢ Ⅎ 𝑡 𝑈 |
| 2 |
|
stoweidlem28.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem28.3 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 4 |
|
stoweidlem28.4 |
⊢ 𝑇 = ∪ 𝐽 |
| 5 |
|
stoweidlem28.5 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
| 6 |
|
stoweidlem28.6 |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 7 |
|
stoweidlem28.7 |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ) |
| 8 |
|
stoweidlem28.8 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 9 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 10 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 11 |
9 10
|
elrpii |
⊢ ( 1 / 2 ) ∈ ℝ+ |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 1 / 2 ) ∈ ℝ+ ) |
| 13 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 1 / 2 ) < 1 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑇 |
| 16 |
15 1
|
nfdif |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) |
| 17 |
16
|
nfeq1 |
⊢ Ⅎ 𝑡 ( 𝑇 ∖ 𝑈 ) = ∅ |
| 18 |
17
|
rzalf |
⊢ ( ( 𝑇 ∖ 𝑈 ) = ∅ → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 / 2 ) ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 / 2 ) ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 20 |
|
ovex |
⊢ ( 1 / 2 ) ∈ V |
| 21 |
|
eleq1 |
⊢ ( 𝑑 = ( 1 / 2 ) → ( 𝑑 ∈ ℝ+ ↔ ( 1 / 2 ) ∈ ℝ+ ) ) |
| 22 |
|
breq1 |
⊢ ( 𝑑 = ( 1 / 2 ) → ( 𝑑 < 1 ↔ ( 1 / 2 ) < 1 ) ) |
| 23 |
|
breq1 |
⊢ ( 𝑑 = ( 1 / 2 ) → ( 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ↔ ( 1 / 2 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 24 |
23
|
ralbidv |
⊢ ( 𝑑 = ( 1 / 2 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 / 2 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 25 |
21 22 24
|
3anbi123d |
⊢ ( 𝑑 = ( 1 / 2 ) → ( ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ↔ ( ( 1 / 2 ) ∈ ℝ+ ∧ ( 1 / 2 ) < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 / 2 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
| 26 |
20 25
|
spcev |
⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ ( 1 / 2 ) < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 / 2 ) ≤ ( 𝑃 ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 27 |
12 14 19 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 28 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → 𝜑 ) |
| 29 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 31 |
|
eqid |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 ) |
| 32 |
3 4 31 6
|
fcnre |
⊢ ( 𝜑 → 𝑃 : 𝑇 ⟶ ℝ ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑃 : 𝑇 ⟶ ℝ ) |
| 34 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) → 𝑥 ∈ 𝑇 ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑥 ∈ 𝑇 ) |
| 36 |
33 35
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑥 ) ∈ ℝ ) |
| 37 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑇 ∖ 𝑈 ) |
| 38 |
|
nfv |
⊢ Ⅎ 𝑥 0 < ( 𝑃 ‘ 𝑡 ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑡 0 < ( 𝑃 ‘ 𝑥 ) |
| 40 |
|
fveq2 |
⊢ ( 𝑡 = 𝑥 → ( 𝑃 ‘ 𝑡 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 41 |
40
|
breq2d |
⊢ ( 𝑡 = 𝑥 → ( 0 < ( 𝑃 ‘ 𝑡 ) ↔ 0 < ( 𝑃 ‘ 𝑥 ) ) ) |
| 42 |
16 37 38 39 41
|
cbvralfw |
⊢ ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ↔ ∀ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑥 ) ) |
| 43 |
42
|
biimpi |
⊢ ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) → ∀ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑥 ) ) |
| 44 |
43
|
r19.21bi |
⊢ ( ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 0 < ( 𝑃 ‘ 𝑡 ) ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 < ( 𝑃 ‘ 𝑥 ) ) |
| 45 |
7 44
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) → 0 < ( 𝑃 ‘ 𝑥 ) ) |
| 46 |
36 45
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ ) |
| 47 |
46
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ ) |
| 48 |
16
|
nfcri |
⊢ Ⅎ 𝑡 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) |
| 49 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) |
| 50 |
2 48 49
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 51 |
|
rspa |
⊢ ( ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 52 |
51
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 53 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 54 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 56 |
|
fvres |
⊢ ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) = ( 𝑃 ‘ 𝑡 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) = ( 𝑃 ‘ 𝑡 ) ) |
| 58 |
52 55 57
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 59 |
58
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ( 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) → ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 60 |
50 59
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 61 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝑃 ‘ 𝑥 ) → ( 𝑐 ∈ ℝ+ ↔ ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ ) ) |
| 62 |
|
breq1 |
⊢ ( 𝑐 = ( 𝑃 ‘ 𝑥 ) → ( 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ↔ ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 63 |
62
|
ralbidv |
⊢ ( 𝑐 = ( 𝑃 ‘ 𝑥 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 64 |
61 63
|
anbi12d |
⊢ ( 𝑐 = ( 𝑃 ‘ 𝑥 ) → ( ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ↔ ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
| 65 |
64
|
spcegv |
⊢ ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ → ( ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) → ∃ 𝑐 ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
| 66 |
47 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ( ( ( 𝑃 ‘ 𝑥 ) ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 𝑃 ‘ 𝑥 ) ≤ ( 𝑃 ‘ 𝑡 ) ) → ∃ 𝑐 ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) ) |
| 67 |
47 60 66
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ∃ 𝑐 ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 68 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) → 𝜑 ) |
| 69 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) → 𝑐 ∈ ℝ+ ) |
| 70 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 71 |
|
nfv |
⊢ Ⅎ 𝑡 𝑐 ∈ ℝ+ |
| 72 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) |
| 73 |
2 71 72
|
nf3an |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 74 |
|
eqid |
⊢ if ( 𝑐 ≤ ( 1 / 2 ) , 𝑐 , ( 1 / 2 ) ) = if ( 𝑐 ≤ ( 1 / 2 ) , 𝑐 , ( 1 / 2 ) ) |
| 75 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) → 𝑃 : 𝑇 ⟶ ℝ ) |
| 76 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) → ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) |
| 77 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) → 𝑐 ∈ ℝ+ ) |
| 78 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) |
| 79 |
73 74 75 76 77 78
|
stoweidlem5 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 80 |
68 69 70 79
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ∧ ( 𝑐 ∈ ℝ+ ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑐 ≤ ( 𝑃 ‘ 𝑡 ) ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 81 |
67 80
|
exlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 82 |
28 29 30 81
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ∧ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 83 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) = ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) |
| 84 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
| 85 |
5 84
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 86 |
|
elssuni |
⊢ ( 𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽 ) |
| 87 |
8 86
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ∪ 𝐽 ) |
| 88 |
87 4
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑈 ⊆ 𝑇 ) |
| 89 |
4
|
isopn2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑈 ⊆ 𝑇 ) → ( 𝑈 ∈ 𝐽 ↔ ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 90 |
85 88 89
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 ∈ 𝐽 ↔ ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 91 |
8 90
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 92 |
|
cmpcld |
⊢ ( ( 𝐽 ∈ Comp ∧ ( 𝑇 ∖ 𝑈 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ) |
| 93 |
5 91 92
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∈ Comp ) |
| 95 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 96 |
|
difssd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) |
| 97 |
4
|
cnrest |
⊢ ( ( 𝑃 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) → ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ∈ ( ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) Cn 𝐾 ) ) |
| 98 |
95 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ∈ ( ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) Cn 𝐾 ) ) |
| 99 |
|
difssd |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) |
| 100 |
4
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑇 ∖ 𝑈 ) ⊆ 𝑇 ) → ( 𝑇 ∖ 𝑈 ) = ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ) |
| 101 |
85 99 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ∖ 𝑈 ) = ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ) |
| 102 |
101
|
neeq1d |
⊢ ( 𝜑 → ( ( 𝑇 ∖ 𝑈 ) ≠ ∅ ↔ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ≠ ∅ ) ) |
| 103 |
|
df-ne |
⊢ ( ( 𝑇 ∖ 𝑈 ) ≠ ∅ ↔ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) |
| 104 |
102 103
|
bitr3di |
⊢ ( 𝜑 → ( ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ≠ ∅ ↔ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) ) |
| 105 |
104
|
biimpar |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ≠ ∅ ) |
| 106 |
83 3 94 98 105
|
evth2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑠 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) ) |
| 107 |
|
nfcv |
⊢ Ⅎ 𝑠 ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐽 |
| 109 |
|
nfcv |
⊢ Ⅎ 𝑡 ↾t |
| 110 |
108 109 16
|
nfov |
⊢ Ⅎ 𝑡 ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) |
| 111 |
110
|
nfuni |
⊢ Ⅎ 𝑡 ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) |
| 112 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑃 |
| 113 |
112 16
|
nfres |
⊢ Ⅎ 𝑡 ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) |
| 114 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑥 |
| 115 |
113 114
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) |
| 116 |
|
nfcv |
⊢ Ⅎ 𝑡 ≤ |
| 117 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑠 |
| 118 |
113 117
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) |
| 119 |
115 116 118
|
nfbr |
⊢ Ⅎ 𝑡 ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) |
| 120 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) |
| 121 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) = ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 122 |
121
|
breq2d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) ↔ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ) |
| 123 |
107 111 119 120 122
|
cbvralfw |
⊢ ( ∀ 𝑠 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) ↔ ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 124 |
123
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑠 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑠 ) ↔ ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 125 |
106 124
|
sylib |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 126 |
16 111
|
raleqf |
⊢ ( ( 𝑇 ∖ 𝑈 ) = ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ) |
| 127 |
126
|
rexeqbi1dv |
⊢ ( ( 𝑇 ∖ 𝑈 ) = ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) → ( ∃ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ↔ ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ) |
| 128 |
101 127
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ↔ ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ( ∃ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ↔ ∃ 𝑥 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ∀ 𝑡 ∈ ∪ ( 𝐽 ↾t ( 𝑇 ∖ 𝑈 ) ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) ) |
| 130 |
125 129
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑥 ∈ ( 𝑇 ∖ 𝑈 ) ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑥 ) ≤ ( ( 𝑃 ↾ ( 𝑇 ∖ 𝑈 ) ) ‘ 𝑡 ) ) |
| 131 |
82 130
|
r19.29a |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑇 ∖ 𝑈 ) = ∅ ) → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |
| 132 |
27 131
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑑 ( 𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) 𝑑 ≤ ( 𝑃 ‘ 𝑡 ) ) ) |