Step |
Hyp |
Ref |
Expression |
1 |
|
stoweidlem3.1 |
⊢ Ⅎ 𝑖 𝐹 |
2 |
|
stoweidlem3.2 |
⊢ Ⅎ 𝑖 𝜑 |
3 |
|
stoweidlem3.3 |
⊢ 𝑋 = seq 1 ( · , 𝐹 ) |
4 |
|
stoweidlem3.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
stoweidlem3.5 |
⊢ ( 𝜑 → 𝐹 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
6 |
|
stoweidlem3.6 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ 𝑖 ) ) |
7 |
|
stoweidlem3.7 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
8 |
|
elnnuz |
⊢ ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
9 |
4 8
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
10 |
|
eluzfz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑀 ) ) |
12 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 1 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝑋 ‘ 𝑛 ) = ( 𝑋 ‘ 1 ) ) |
14 |
12 13
|
breq12d |
⊢ ( 𝑛 = 1 → ( ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ↔ ( 𝐴 ↑ 1 ) < ( 𝑋 ‘ 1 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝜑 → ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ) ↔ ( 𝜑 → ( 𝐴 ↑ 1 ) < ( 𝑋 ‘ 1 ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑚 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑋 ‘ 𝑛 ) = ( 𝑋 ‘ 𝑚 ) ) |
18 |
16 17
|
breq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ↔ ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 → ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ) ↔ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ ( 𝑚 + 1 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑋 ‘ 𝑛 ) = ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) |
22 |
20 21
|
breq12d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ↔ ( 𝐴 ↑ ( 𝑚 + 1 ) ) < ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ) ↔ ( 𝜑 → ( 𝐴 ↑ ( 𝑚 + 1 ) ) < ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑀 ) ) |
25 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑋 ‘ 𝑛 ) = ( 𝑋 ‘ 𝑀 ) ) |
26 |
24 25
|
breq12d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ↔ ( 𝐴 ↑ 𝑀 ) < ( 𝑋 ‘ 𝑀 ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑛 = 𝑀 → ( ( 𝜑 → ( 𝐴 ↑ 𝑛 ) < ( 𝑋 ‘ 𝑛 ) ) ↔ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) < ( 𝑋 ‘ 𝑀 ) ) ) ) |
28 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
29 |
4
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
30 |
|
1le1 |
⊢ 1 ≤ 1 |
31 |
30
|
a1i |
⊢ ( 𝜑 → 1 ≤ 1 ) |
32 |
4
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
33 |
28 29 28 31 32
|
elfzd |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) ) |
34 |
33
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑀 ) ) ) |
35 |
|
nfv |
⊢ Ⅎ 𝑖 1 ∈ ( 1 ... 𝑀 ) |
36 |
2 35
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑀 ) ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑖 𝐴 |
38 |
|
nfcv |
⊢ Ⅎ 𝑖 < |
39 |
|
nfcv |
⊢ Ⅎ 𝑖 1 |
40 |
1 39
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 1 ) |
41 |
37 38 40
|
nfbr |
⊢ Ⅎ 𝑖 𝐴 < ( 𝐹 ‘ 1 ) |
42 |
36 41
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ 1 ) ) |
43 |
|
eleq1 |
⊢ ( 𝑖 = 1 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 1 ∈ ( 1 ... 𝑀 ) ) ) |
44 |
43
|
anbi2d |
⊢ ( 𝑖 = 1 → ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑀 ) ) ) ) |
45 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 1 ) ) |
46 |
45
|
breq2d |
⊢ ( 𝑖 = 1 → ( 𝐴 < ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 < ( 𝐹 ‘ 1 ) ) ) |
47 |
44 46
|
imbi12d |
⊢ ( 𝑖 = 1 → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ 𝑖 ) ) ↔ ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ 1 ) ) ) ) |
48 |
42 47 6
|
vtoclg1f |
⊢ ( 1 ∈ ( 1 ... 𝑀 ) → ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ 1 ) ) ) |
49 |
33 34 48
|
sylc |
⊢ ( 𝜑 → 𝐴 < ( 𝐹 ‘ 1 ) ) |
50 |
7
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
51 |
50
|
exp1d |
⊢ ( 𝜑 → ( 𝐴 ↑ 1 ) = 𝐴 ) |
52 |
3
|
fveq1i |
⊢ ( 𝑋 ‘ 1 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) |
53 |
|
1z |
⊢ 1 ∈ ℤ |
54 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
55 |
53 54
|
ax-mp |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
56 |
52 55
|
eqtri |
⊢ ( 𝑋 ‘ 1 ) = ( 𝐹 ‘ 1 ) |
57 |
56
|
a1i |
⊢ ( 𝜑 → ( 𝑋 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
58 |
49 51 57
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐴 ↑ 1 ) < ( 𝑋 ‘ 1 ) ) |
59 |
58
|
a1i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝜑 → ( 𝐴 ↑ 1 ) < ( 𝑋 ‘ 1 ) ) ) |
60 |
7
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝐴 ∈ ℝ+ ) |
61 |
60
|
rpred |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝐴 ∈ ℝ ) |
62 |
|
elfzouz |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
63 |
|
elnnuz |
⊢ ( 𝑚 ∈ ℕ ↔ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
64 |
|
nnnn0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) |
65 |
63 64
|
sylbir |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → 𝑚 ∈ ℕ0 ) |
66 |
62 65
|
syl |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑚 ∈ ℕ0 ) |
67 |
66
|
3ad2ant1 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝑚 ∈ ℕ0 ) |
68 |
61 67
|
reexpcld |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝐴 ↑ 𝑚 ) ∈ ℝ ) |
69 |
3
|
fveq1i |
⊢ ( 𝑋 ‘ 𝑚 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) |
70 |
62
|
adantr |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
71 |
|
nfv |
⊢ Ⅎ 𝑖 𝑚 ∈ ( 1 ..^ 𝑀 ) |
72 |
71 2
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) |
73 |
|
nfv |
⊢ Ⅎ 𝑖 𝑎 ∈ ( 1 ... 𝑚 ) |
74 |
72 73
|
nfan |
⊢ Ⅎ 𝑖 ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑎 ∈ ( 1 ... 𝑚 ) ) |
75 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑎 |
76 |
1 75
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑎 ) |
77 |
76
|
nfel1 |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑎 ) ∈ ℝ |
78 |
74 77
|
nfim |
⊢ Ⅎ 𝑖 ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑎 ∈ ( 1 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
79 |
|
eleq1 |
⊢ ( 𝑖 = 𝑎 → ( 𝑖 ∈ ( 1 ... 𝑚 ) ↔ 𝑎 ∈ ( 1 ... 𝑚 ) ) ) |
80 |
79
|
anbi2d |
⊢ ( 𝑖 = 𝑎 → ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) ↔ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑎 ∈ ( 1 ... 𝑚 ) ) ) ) |
81 |
|
fveq2 |
⊢ ( 𝑖 = 𝑎 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑎 ) ) |
82 |
81
|
eleq1d |
⊢ ( 𝑖 = 𝑎 → ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) ) |
83 |
80 82
|
imbi12d |
⊢ ( 𝑖 = 𝑎 → ( ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑎 ∈ ( 1 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) ) ) |
84 |
5
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝐹 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
85 |
|
1zzd |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 1 ∈ ℤ ) |
86 |
29
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑀 ∈ ℤ ) |
87 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ∈ ℤ ) |
88 |
87
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℤ ) |
89 |
|
elfzle1 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 1 ≤ 𝑖 ) |
90 |
89
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 1 ≤ 𝑖 ) |
91 |
87
|
zred |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ∈ ℝ ) |
92 |
91
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ℝ ) |
93 |
|
elfzoelz |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑚 ∈ ℤ ) |
94 |
93
|
zred |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑚 ∈ ℝ ) |
95 |
94
|
ad2antrr |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑚 ∈ ℝ ) |
96 |
4
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
97 |
96
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑀 ∈ ℝ ) |
98 |
|
elfzle2 |
⊢ ( 𝑖 ∈ ( 1 ... 𝑚 ) → 𝑖 ≤ 𝑚 ) |
99 |
98
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ≤ 𝑚 ) |
100 |
|
elfzoel2 |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ℤ ) |
101 |
100
|
zred |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑀 ∈ ℝ ) |
102 |
|
elfzolt2 |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑚 < 𝑀 ) |
103 |
94 101 102
|
ltled |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → 𝑚 ≤ 𝑀 ) |
104 |
103
|
ad2antrr |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑚 ≤ 𝑀 ) |
105 |
92 95 97 99 104
|
letrd |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ≤ 𝑀 ) |
106 |
85 86 88 90 105
|
elfzd |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
107 |
84 106
|
ffvelrnd |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑖 ∈ ( 1 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ ) |
108 |
78 83 107
|
chvarfv |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ 𝑎 ∈ ( 1 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
109 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑗 ∈ ℝ ) ) → ( 𝑎 · 𝑗 ) ∈ ℝ ) |
111 |
70 108 110
|
seqcl |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) ∈ ℝ ) |
112 |
69 111
|
eqeltrid |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → ( 𝑋 ‘ 𝑚 ) ∈ ℝ ) |
113 |
112
|
3adant2 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝑋 ‘ 𝑚 ) ∈ ℝ ) |
114 |
5
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝐹 : ( 1 ... 𝑀 ) ⟶ ℝ ) |
115 |
|
fzofzp1 |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
116 |
115
|
3ad2ant1 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
117 |
114 116
|
ffvelrnd |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝐹 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
118 |
7
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
119 |
118
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 0 ≤ 𝐴 ) |
120 |
61 67 119
|
expge0d |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 0 ≤ ( 𝐴 ↑ 𝑚 ) ) |
121 |
|
simp3 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝜑 ) |
122 |
|
simp2 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ) |
123 |
121 122
|
mpd |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) |
124 |
115
|
adantr |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
125 |
|
simpr |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → 𝜑 ) |
126 |
125 124
|
jca |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
127 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) |
128 |
2 127
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
129 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑚 + 1 ) |
130 |
1 129
|
nffv |
⊢ Ⅎ 𝑖 ( 𝐹 ‘ ( 𝑚 + 1 ) ) |
131 |
37 38 130
|
nfbr |
⊢ Ⅎ 𝑖 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) |
132 |
128 131
|
nfim |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
133 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
134 |
133
|
anbi2d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) ) |
135 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
136 |
135
|
breq2d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝐴 < ( 𝐹 ‘ 𝑖 ) ↔ 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
137 |
134 136
|
imbi12d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ 𝑖 ) ) ↔ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) ) |
138 |
132 137 6
|
vtoclg1f |
⊢ ( ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) → ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ( 1 ... 𝑀 ) ) → 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
139 |
124 126 138
|
sylc |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ 𝜑 ) → 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
140 |
139
|
3adant2 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝐴 < ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) |
141 |
68 113 61 117 120 123 119 140
|
ltmul12ad |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( ( 𝐴 ↑ 𝑚 ) · 𝐴 ) < ( ( 𝑋 ‘ 𝑚 ) · ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
142 |
50
|
3ad2ant3 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝐴 ∈ ℂ ) |
143 |
142 67
|
expp1d |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝐴 ↑ ( 𝑚 + 1 ) ) = ( ( 𝐴 ↑ 𝑚 ) · 𝐴 ) ) |
144 |
3
|
fveq1i |
⊢ ( 𝑋 ‘ ( 𝑚 + 1 ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑚 + 1 ) ) |
145 |
144
|
a1i |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑚 + 1 ) ) ) |
146 |
62
|
3ad2ant1 |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
147 |
|
seqp1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) · ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
148 |
146 147
|
syl |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑚 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) · ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
149 |
69
|
a1i |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝑋 ‘ 𝑚 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) ) |
150 |
149
|
eqcomd |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) = ( 𝑋 ‘ 𝑚 ) ) |
151 |
150
|
oveq1d |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑚 ) · ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) = ( ( 𝑋 ‘ 𝑚 ) · ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
152 |
145 148 151
|
3eqtrd |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝑋 ‘ ( 𝑚 + 1 ) ) = ( ( 𝑋 ‘ 𝑚 ) · ( 𝐹 ‘ ( 𝑚 + 1 ) ) ) ) |
153 |
141 143 152
|
3brtr4d |
⊢ ( ( 𝑚 ∈ ( 1 ..^ 𝑀 ) ∧ ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) ∧ 𝜑 ) → ( 𝐴 ↑ ( 𝑚 + 1 ) ) < ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) |
154 |
153
|
3exp |
⊢ ( 𝑚 ∈ ( 1 ..^ 𝑀 ) → ( ( 𝜑 → ( 𝐴 ↑ 𝑚 ) < ( 𝑋 ‘ 𝑚 ) ) → ( 𝜑 → ( 𝐴 ↑ ( 𝑚 + 1 ) ) < ( 𝑋 ‘ ( 𝑚 + 1 ) ) ) ) ) |
155 |
15 19 23 27 59 154
|
fzind2 |
⊢ ( 𝑀 ∈ ( 1 ... 𝑀 ) → ( 𝜑 → ( 𝐴 ↑ 𝑀 ) < ( 𝑋 ‘ 𝑀 ) ) ) |
156 |
11 155
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) < ( 𝑋 ‘ 𝑀 ) ) |