Metamath Proof Explorer


Theorem stoweidlem30

Description: This lemma is used to prove the existence of a function p as in Lemma 1 BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used for t_0, P is used for p, ( Gi ) is used for p__(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem30.1 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
stoweidlem30.2 𝑃 = ( 𝑡𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) )
stoweidlem30.3 ( 𝜑𝑀 ∈ ℕ )
stoweidlem30.4 ( 𝜑𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 )
stoweidlem30.5 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
Assertion stoweidlem30 ( ( 𝜑𝑆𝑇 ) → ( 𝑃𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem30.1 𝑄 = { 𝐴 ∣ ( ( 𝑍 ) = 0 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ) }
2 stoweidlem30.2 𝑃 = ( 𝑡𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) )
3 stoweidlem30.3 ( 𝜑𝑀 ∈ ℕ )
4 stoweidlem30.4 ( 𝜑𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 )
5 stoweidlem30.5 ( ( 𝜑𝑓𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ )
6 eleq1 ( 𝑠 = 𝑆 → ( 𝑠𝑇𝑆𝑇 ) )
7 6 anbi2d ( 𝑠 = 𝑆 → ( ( 𝜑𝑠𝑇 ) ↔ ( 𝜑𝑆𝑇 ) ) )
8 fveq2 ( 𝑠 = 𝑆 → ( 𝑃𝑠 ) = ( 𝑃𝑆 ) )
9 fveq2 ( 𝑠 = 𝑆 → ( ( 𝐺𝑖 ) ‘ 𝑠 ) = ( ( 𝐺𝑖 ) ‘ 𝑆 ) )
10 9 sumeq2sdv ( 𝑠 = 𝑆 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) )
11 10 oveq2d ( 𝑠 = 𝑆 → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) ) )
12 8 11 eqeq12d ( 𝑠 = 𝑆 → ( ( 𝑃𝑠 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ) ↔ ( 𝑃𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) ) ) )
13 7 12 imbi12d ( 𝑠 = 𝑆 → ( ( ( 𝜑𝑠𝑇 ) → ( 𝑃𝑠 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ) ) ↔ ( ( 𝜑𝑆𝑇 ) → ( 𝑃𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) ) ) ) )
14 fveq2 ( 𝑡 = 𝑠 → ( ( 𝐺𝑖 ) ‘ 𝑡 ) = ( ( 𝐺𝑖 ) ‘ 𝑠 ) )
15 14 sumeq2sdv ( 𝑡 = 𝑠 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) )
16 15 oveq2d ( 𝑡 = 𝑠 → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑡 ) ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ) )
17 simpr ( ( 𝜑𝑠𝑇 ) → 𝑠𝑇 )
18 3 nnrecred ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ )
19 18 adantr ( ( 𝜑𝑠𝑇 ) → ( 1 / 𝑀 ) ∈ ℝ )
20 fzfid ( ( 𝜑𝑠𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin )
21 1 4 5 stoweidlem15 ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑠𝑇 ) → ( ( ( 𝐺𝑖 ) ‘ 𝑠 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺𝑖 ) ‘ 𝑠 ) ∧ ( ( 𝐺𝑖 ) ‘ 𝑠 ) ≤ 1 ) )
22 21 simp1d ( ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑠𝑇 ) → ( ( 𝐺𝑖 ) ‘ 𝑠 ) ∈ ℝ )
23 22 an32s ( ( ( 𝜑𝑠𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑖 ) ‘ 𝑠 ) ∈ ℝ )
24 20 23 fsumrecl ( ( 𝜑𝑠𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ∈ ℝ )
25 19 24 remulcld ( ( 𝜑𝑠𝑇 ) → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ) ∈ ℝ )
26 2 16 17 25 fvmptd3 ( ( 𝜑𝑠𝑇 ) → ( 𝑃𝑠 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑠 ) ) )
27 13 26 vtoclg ( 𝑆𝑇 → ( ( 𝜑𝑆𝑇 ) → ( 𝑃𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) ) ) )
28 27 anabsi7 ( ( 𝜑𝑆𝑇 ) → ( 𝑃𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺𝑖 ) ‘ 𝑆 ) ) )