| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem31.1 |
⊢ Ⅎ ℎ 𝜑 |
| 2 |
|
stoweidlem31.2 |
⊢ Ⅎ 𝑡 𝜑 |
| 3 |
|
stoweidlem31.3 |
⊢ Ⅎ 𝑤 𝜑 |
| 4 |
|
stoweidlem31.4 |
⊢ 𝑌 = { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 5 |
|
stoweidlem31.5 |
⊢ 𝑉 = { 𝑤 ∈ 𝐽 ∣ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) } |
| 6 |
|
stoweidlem31.6 |
⊢ 𝐺 = ( 𝑤 ∈ 𝑅 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 7 |
|
stoweidlem31.7 |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑉 ) |
| 8 |
|
stoweidlem31.8 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 9 |
|
stoweidlem31.9 |
⊢ ( 𝜑 → 𝑣 : ( 1 ... 𝑀 ) –1-1-onto→ 𝑅 ) |
| 10 |
|
stoweidlem31.10 |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 11 |
|
stoweidlem31.11 |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑇 ∖ 𝑈 ) ) |
| 12 |
|
stoweidlem31.12 |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 13 |
|
stoweidlem31.13 |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 14 |
|
stoweidlem31.14 |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 15 |
|
fnchoice |
⊢ ( ran 𝐺 ∈ Fin → ∃ 𝑙 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) |
| 16 |
14 15
|
syl |
⊢ ( 𝜑 → ∃ 𝑙 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) |
| 17 |
|
vex |
⊢ 𝑙 ∈ V |
| 18 |
12 7
|
ssexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 19 |
|
mptexg |
⊢ ( 𝑅 ∈ V → ( 𝑤 ∈ 𝑅 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ∈ V ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑅 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ∈ V ) |
| 21 |
6 20
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 22 |
|
vex |
⊢ 𝑣 ∈ V |
| 23 |
|
coexg |
⊢ ( ( 𝐺 ∈ V ∧ 𝑣 ∈ V ) → ( 𝐺 ∘ 𝑣 ) ∈ V ) |
| 24 |
21 22 23
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝑣 ) ∈ V ) |
| 25 |
|
coexg |
⊢ ( ( 𝑙 ∈ V ∧ ( 𝐺 ∘ 𝑣 ) ∈ V ) → ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ∈ V ) |
| 26 |
17 24 25
|
sylancr |
⊢ ( 𝜑 → ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ∈ V ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ∈ V ) |
| 28 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → 𝑙 Fn ran 𝐺 ) |
| 29 |
|
nfcv |
⊢ Ⅎ ℎ 𝑙 |
| 30 |
|
nfcv |
⊢ Ⅎ ℎ 𝑅 |
| 31 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } |
| 32 |
30 31
|
nfmpt |
⊢ Ⅎ ℎ ( 𝑤 ∈ 𝑅 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 33 |
6 32
|
nfcxfr |
⊢ Ⅎ ℎ 𝐺 |
| 34 |
33
|
nfrn |
⊢ Ⅎ ℎ ran 𝐺 |
| 35 |
29 34
|
nffn |
⊢ Ⅎ ℎ 𝑙 Fn ran 𝐺 |
| 36 |
|
nfv |
⊢ Ⅎ ℎ ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 37 |
34 36
|
nfralw |
⊢ Ⅎ ℎ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 38 |
35 37
|
nfan |
⊢ Ⅎ ℎ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 39 |
1 38
|
nfan |
⊢ Ⅎ ℎ ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) |
| 40 |
|
fvelrnb |
⊢ ( 𝑙 Fn ran 𝐺 → ( ℎ ∈ ran 𝑙 ↔ ∃ 𝑏 ∈ ran 𝐺 ( 𝑙 ‘ 𝑏 ) = ℎ ) ) |
| 41 |
28 40
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ( ℎ ∈ ran 𝑙 ↔ ∃ 𝑏 ∈ ran 𝐺 ( 𝑙 ‘ 𝑏 ) = ℎ ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ∃ 𝑏 ∈ ran 𝐺 ( 𝑙 ‘ 𝑏 ) = ℎ ) |
| 43 |
|
nfv |
⊢ Ⅎ 𝑏 𝜑 |
| 44 |
|
nfv |
⊢ Ⅎ 𝑏 𝑙 Fn ran 𝐺 |
| 45 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 46 |
44 45
|
nfan |
⊢ Ⅎ 𝑏 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 47 |
43 46
|
nfan |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) |
| 48 |
|
nfv |
⊢ Ⅎ 𝑏 ℎ ∈ ran 𝑙 |
| 49 |
47 48
|
nfan |
⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) |
| 50 |
|
simp3 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) = ℎ ) → ( 𝑙 ‘ 𝑏 ) = ℎ ) |
| 51 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) = ℎ ) → 𝜑 ) |
| 52 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 53 |
52
|
3ad2ant1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) = ℎ ) → ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 54 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) = ℎ ) → 𝑏 ∈ ran 𝐺 ) |
| 55 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → 𝑏 ∈ ran 𝐺 ) |
| 56 |
|
3simpc |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) ) |
| 57 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → 𝑏 ∈ ran 𝐺 ) |
| 58 |
|
rabexg |
⊢ ( 𝐴 ∈ V → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) |
| 59 |
13 58
|
syl |
⊢ ( 𝜑 → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) |
| 60 |
59
|
a1d |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑅 → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) ) |
| 61 |
3 60
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑅 { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) |
| 62 |
6
|
fnmpt |
⊢ ( ∀ 𝑤 ∈ 𝑅 { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V → 𝐺 Fn 𝑅 ) |
| 63 |
61 62
|
syl |
⊢ ( 𝜑 → 𝐺 Fn 𝑅 ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → 𝐺 Fn 𝑅 ) |
| 65 |
|
fvelrnb |
⊢ ( 𝐺 Fn 𝑅 → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑢 ∈ 𝑅 ( 𝐺 ‘ 𝑢 ) = 𝑏 ) ) |
| 66 |
|
nfmpt1 |
⊢ Ⅎ 𝑤 ( 𝑤 ∈ 𝑅 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 67 |
6 66
|
nfcxfr |
⊢ Ⅎ 𝑤 𝐺 |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑢 |
| 69 |
67 68
|
nffv |
⊢ Ⅎ 𝑤 ( 𝐺 ‘ 𝑢 ) |
| 70 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑏 |
| 71 |
69 70
|
nfeq |
⊢ Ⅎ 𝑤 ( 𝐺 ‘ 𝑢 ) = 𝑏 |
| 72 |
|
nfv |
⊢ Ⅎ 𝑢 ( 𝐺 ‘ 𝑤 ) = 𝑏 |
| 73 |
|
fveq2 |
⊢ ( 𝑢 = 𝑤 → ( 𝐺 ‘ 𝑢 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 74 |
73
|
eqeq1d |
⊢ ( 𝑢 = 𝑤 → ( ( 𝐺 ‘ 𝑢 ) = 𝑏 ↔ ( 𝐺 ‘ 𝑤 ) = 𝑏 ) ) |
| 75 |
71 72 74
|
cbvrexw |
⊢ ( ∃ 𝑢 ∈ 𝑅 ( 𝐺 ‘ 𝑢 ) = 𝑏 ↔ ∃ 𝑤 ∈ 𝑅 ( 𝐺 ‘ 𝑤 ) = 𝑏 ) |
| 76 |
65 75
|
bitrdi |
⊢ ( 𝐺 Fn 𝑅 → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑅 ( 𝐺 ‘ 𝑤 ) = 𝑏 ) ) |
| 77 |
64 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑅 ( 𝐺 ‘ 𝑤 ) = 𝑏 ) ) |
| 78 |
57 77
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → ∃ 𝑤 ∈ 𝑅 ( 𝐺 ‘ 𝑤 ) = 𝑏 ) |
| 79 |
67
|
nfrn |
⊢ Ⅎ 𝑤 ran 𝐺 |
| 80 |
79
|
nfcri |
⊢ Ⅎ 𝑤 𝑏 ∈ ran 𝐺 |
| 81 |
3 80
|
nfan |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) |
| 82 |
|
nfv |
⊢ Ⅎ 𝑤 𝑏 ≠ ∅ |
| 83 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑤 ) = 𝑏 ) → ( 𝐺 ‘ 𝑤 ) = 𝑏 ) |
| 84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → 𝑤 ∈ 𝑅 ) |
| 85 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → 𝐴 ∈ V ) |
| 86 |
85 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) |
| 87 |
6
|
fvmpt2 |
⊢ ( ( 𝑤 ∈ 𝑅 ∧ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) → ( 𝐺 ‘ 𝑤 ) = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 88 |
84 86 87
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ( 𝐺 ‘ 𝑤 ) = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 89 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → 𝑤 ∈ 𝑉 ) |
| 90 |
5
|
reqabi |
⊢ ( 𝑤 ∈ 𝑉 ↔ ( 𝑤 ∈ 𝐽 ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 91 |
89 90
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ( 𝑤 ∈ 𝐽 ∧ ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 92 |
91
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ) |
| 93 |
8
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
| 94 |
10 93
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐸 / 𝑀 ) ∈ ℝ+ ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ( 𝐸 / 𝑀 ) ∈ ℝ+ ) |
| 96 |
|
breq2 |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ( ℎ ‘ 𝑡 ) < 𝑒 ↔ ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 97 |
96
|
ralbidv |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ↔ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 98 |
|
oveq2 |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( 1 − 𝑒 ) = ( 1 − ( 𝐸 / 𝑀 ) ) ) |
| 99 |
98
|
breq1d |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) |
| 100 |
99
|
ralbidv |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) |
| 101 |
97 100
|
3anbi23d |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 102 |
101
|
rexbidv |
⊢ ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ↔ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 103 |
102
|
rspccva |
⊢ ( ( ∀ 𝑒 ∈ ℝ+ ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − 𝑒 ) < ( ℎ ‘ 𝑡 ) ) ∧ ( 𝐸 / 𝑀 ) ∈ ℝ+ ) → ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) |
| 104 |
92 95 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) |
| 105 |
|
nfv |
⊢ Ⅎ ℎ 𝑤 ∈ 𝑅 |
| 106 |
1 105
|
nfan |
⊢ Ⅎ ℎ ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) |
| 107 |
|
nfcv |
⊢ Ⅎ ℎ ∅ |
| 108 |
31 107
|
nfne |
⊢ Ⅎ ℎ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ≠ ∅ |
| 109 |
|
3simpc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) ∧ ℎ ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) → ( ℎ ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 110 |
|
rabid |
⊢ ( ℎ ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ↔ ( ℎ ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 111 |
109 110
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) ∧ ℎ ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) → ℎ ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 112 |
|
ne0i |
⊢ ( ℎ ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ≠ ∅ ) |
| 113 |
111 112
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) ∧ ℎ ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ≠ ∅ ) |
| 114 |
113
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ( ℎ ∈ 𝐴 → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ≠ ∅ ) ) ) |
| 115 |
106 108 114
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ( ∃ ℎ ∈ 𝐴 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ≠ ∅ ) ) |
| 116 |
104 115
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ≠ ∅ ) |
| 117 |
88 116
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ) → ( 𝐺 ‘ 𝑤 ) ≠ ∅ ) |
| 118 |
117
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑤 ) = 𝑏 ) → ( 𝐺 ‘ 𝑤 ) ≠ ∅ ) |
| 119 |
83 118
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑤 ) = 𝑏 ) → 𝑏 ≠ ∅ ) |
| 120 |
119
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) ∧ 𝑤 ∈ 𝑅 ∧ ( 𝐺 ‘ 𝑤 ) = 𝑏 ) → 𝑏 ≠ ∅ ) |
| 121 |
120
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑤 ∈ 𝑅 → ( ( 𝐺 ‘ 𝑤 ) = 𝑏 → 𝑏 ≠ ∅ ) ) ) |
| 122 |
81 82 121
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → ( ∃ 𝑤 ∈ 𝑅 ( 𝐺 ‘ 𝑤 ) = 𝑏 → 𝑏 ≠ ∅ ) ) |
| 123 |
78 122
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ran 𝐺 ) → 𝑏 ≠ ∅ ) |
| 124 |
123
|
3adant2 |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → 𝑏 ≠ ∅ ) |
| 125 |
|
rspa |
⊢ ( ( ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 126 |
56 124 125
|
sylc |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 127 |
55 126
|
jca |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 128 |
|
vex |
⊢ 𝑏 ∈ V |
| 129 |
6
|
elrnmpt |
⊢ ( 𝑏 ∈ V → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑅 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ) |
| 130 |
128 129
|
ax-mp |
⊢ ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤 ∈ 𝑅 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 131 |
55 130
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ∃ 𝑤 ∈ 𝑅 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 132 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 |
| 133 |
80 132
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 134 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 |
| 135 |
|
simp1r |
⊢ ( ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 136 |
|
simp3 |
⊢ ( ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 137 |
|
simpl |
⊢ ( ( ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 138 |
|
simpr |
⊢ ( ( ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 139 |
137 138
|
eleqtrd |
⊢ ( ( ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 140 |
|
elrabi |
⊢ ( ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ( 𝑙 ‘ 𝑏 ) ∈ 𝐴 ) |
| 141 |
|
fveq1 |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ℎ ‘ 𝑡 ) = ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) |
| 142 |
141
|
breq2d |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) |
| 143 |
141
|
breq1d |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 144 |
142 143
|
anbi12d |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 145 |
144
|
ralbidv |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 146 |
141
|
breq1d |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 147 |
146
|
ralbidv |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ 𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 148 |
141
|
breq2d |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) |
| 149 |
148
|
ralbidv |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) |
| 150 |
145 147 149
|
3anbi123d |
⊢ ( ℎ = ( 𝑙 ‘ 𝑏 ) → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) ) |
| 151 |
150
|
elrab |
⊢ ( ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ↔ ( ( 𝑙 ‘ 𝑏 ) ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) ) |
| 152 |
151
|
simprbi |
⊢ ( ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ) ) |
| 153 |
152
|
simp1d |
⊢ ( ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 154 |
145
|
elrab |
⊢ ( ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ↔ ( ( 𝑙 ‘ 𝑏 ) ∈ 𝐴 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙 ‘ 𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 155 |
140 153 154
|
sylanbrc |
⊢ ( ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
| 156 |
139 155
|
syl |
⊢ ( ( ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → ( 𝑙 ‘ 𝑏 ) ∈ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } ) |
| 157 |
156 4
|
eleqtrrdi |
⊢ ( ( ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 ) |
| 158 |
135 136 157
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑤 ∈ 𝑅 ∧ 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 ) |
| 159 |
158
|
3exp |
⊢ ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) → ( 𝑤 ∈ 𝑅 → ( 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 ) ) ) |
| 160 |
133 134 159
|
rexlimd |
⊢ ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) → ( ∃ 𝑤 ∈ 𝑅 𝑏 = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 ) ) |
| 161 |
127 131 160
|
sylc |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 ) |
| 162 |
51 53 54 161
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) = ℎ ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑌 ) |
| 163 |
50 162
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙 ‘ 𝑏 ) = ℎ ) → ℎ ∈ 𝑌 ) |
| 164 |
163
|
3exp |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ( 𝑏 ∈ ran 𝐺 → ( ( 𝑙 ‘ 𝑏 ) = ℎ → ℎ ∈ 𝑌 ) ) ) |
| 165 |
49 164
|
reximdai |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ( ∃ 𝑏 ∈ ran 𝐺 ( 𝑙 ‘ 𝑏 ) = ℎ → ∃ 𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌 ) ) |
| 166 |
42 165
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ∃ 𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌 ) |
| 167 |
|
nfv |
⊢ Ⅎ 𝑏 ℎ ∈ 𝑌 |
| 168 |
|
idd |
⊢ ( 𝑏 ∈ ran 𝐺 → ( ℎ ∈ 𝑌 → ℎ ∈ 𝑌 ) ) |
| 169 |
168
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ( 𝑏 ∈ ran 𝐺 → ( ℎ ∈ 𝑌 → ℎ ∈ 𝑌 ) ) ) |
| 170 |
49 167 169
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ( ∃ 𝑏 ∈ ran 𝐺 ℎ ∈ 𝑌 → ℎ ∈ 𝑌 ) ) |
| 171 |
166 170
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ ℎ ∈ ran 𝑙 ) → ℎ ∈ 𝑌 ) |
| 172 |
171
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ( ℎ ∈ ran 𝑙 → ℎ ∈ 𝑌 ) ) |
| 173 |
39 172
|
ralrimi |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ∀ ℎ ∈ ran 𝑙 ℎ ∈ 𝑌 ) |
| 174 |
|
dfss3 |
⊢ ( ran 𝑙 ⊆ 𝑌 ↔ ∀ 𝑧 ∈ ran 𝑙 𝑧 ∈ 𝑌 ) |
| 175 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ 𝐴 ∣ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) } |
| 176 |
4 175
|
nfcxfr |
⊢ Ⅎ ℎ 𝑌 |
| 177 |
176
|
nfcri |
⊢ Ⅎ ℎ 𝑧 ∈ 𝑌 |
| 178 |
|
nfv |
⊢ Ⅎ 𝑧 ℎ ∈ 𝑌 |
| 179 |
|
eleq1 |
⊢ ( 𝑧 = ℎ → ( 𝑧 ∈ 𝑌 ↔ ℎ ∈ 𝑌 ) ) |
| 180 |
177 178 179
|
cbvralw |
⊢ ( ∀ 𝑧 ∈ ran 𝑙 𝑧 ∈ 𝑌 ↔ ∀ ℎ ∈ ran 𝑙 ℎ ∈ 𝑌 ) |
| 181 |
174 180
|
bitri |
⊢ ( ran 𝑙 ⊆ 𝑌 ↔ ∀ ℎ ∈ ran 𝑙 ℎ ∈ 𝑌 ) |
| 182 |
173 181
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ran 𝑙 ⊆ 𝑌 ) |
| 183 |
|
df-f |
⊢ ( 𝑙 : ran 𝐺 ⟶ 𝑌 ↔ ( 𝑙 Fn ran 𝐺 ∧ ran 𝑙 ⊆ 𝑌 ) ) |
| 184 |
28 182 183
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → 𝑙 : ran 𝐺 ⟶ 𝑌 ) |
| 185 |
|
dffn3 |
⊢ ( 𝐺 Fn 𝑅 ↔ 𝐺 : 𝑅 ⟶ ran 𝐺 ) |
| 186 |
63 185
|
sylib |
⊢ ( 𝜑 → 𝐺 : 𝑅 ⟶ ran 𝐺 ) |
| 187 |
186
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → 𝐺 : 𝑅 ⟶ ran 𝐺 ) |
| 188 |
|
f1of |
⊢ ( 𝑣 : ( 1 ... 𝑀 ) –1-1-onto→ 𝑅 → 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) |
| 189 |
9 188
|
syl |
⊢ ( 𝜑 → 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) |
| 191 |
|
fco |
⊢ ( ( 𝐺 : 𝑅 ⟶ ran 𝐺 ∧ 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) → ( 𝐺 ∘ 𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) |
| 192 |
187 190 191
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ( 𝐺 ∘ 𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) |
| 193 |
|
fco |
⊢ ( ( 𝑙 : ran 𝐺 ⟶ 𝑌 ∧ ( 𝐺 ∘ 𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) → ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
| 194 |
184 192 193
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) |
| 195 |
|
fvco3 |
⊢ ( ( ( 𝐺 ∘ 𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) = ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ) |
| 196 |
192 195
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) = ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ) |
| 197 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 ) |
| 198 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 199 |
192
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) |
| 200 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) |
| 201 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 |
| 202 |
43 45 201
|
nf3an |
⊢ Ⅎ 𝑏 ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) |
| 203 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) |
| 204 |
202 203
|
nfim |
⊢ Ⅎ 𝑏 ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) |
| 205 |
|
eleq1 |
⊢ ( 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ( 𝑏 ∈ ran 𝐺 ↔ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) ) |
| 206 |
205
|
3anbi3d |
⊢ ( 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) ) ) |
| 207 |
|
fveq2 |
⊢ ( 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ( 𝑙 ‘ 𝑏 ) = ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ) |
| 208 |
|
id |
⊢ ( 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) |
| 209 |
207 208
|
eleq12d |
⊢ ( 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ( ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ↔ ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ) |
| 210 |
206 209
|
imbi12d |
⊢ ( 𝑏 = ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ( ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ↔ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ) ) |
| 211 |
204 210 126
|
vtoclg1f |
⊢ ( ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 → ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ) |
| 212 |
200 211
|
mpcom |
⊢ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) |
| 213 |
197 198 199 212
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑙 ‘ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) |
| 214 |
196 213
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ) |
| 215 |
|
fvco3 |
⊢ ( ( 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑣 ‘ 𝑖 ) ) ) |
| 216 |
189 215
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑣 ‘ 𝑖 ) ) ) |
| 217 |
|
raleq |
⊢ ( 𝑤 = ( 𝑣 ‘ 𝑖 ) → ( ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 218 |
217
|
3anbi2d |
⊢ ( 𝑤 = ( 𝑣 ‘ 𝑖 ) → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ) ) |
| 219 |
218
|
rabbidv |
⊢ ( 𝑤 = ( 𝑣 ‘ 𝑖 ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 220 |
189
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑣 ‘ 𝑖 ) ∈ 𝑅 ) |
| 221 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ∈ V ) |
| 222 |
|
rabexg |
⊢ ( 𝐴 ∈ V → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) |
| 223 |
221 222
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ∈ V ) |
| 224 |
6 219 220 223
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝑣 ‘ 𝑖 ) ) = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 225 |
216 224
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 226 |
225
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) = { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 227 |
226
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) ↔ ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) ) |
| 228 |
|
nfcv |
⊢ Ⅎ ℎ 𝑣 |
| 229 |
33 228
|
nfco |
⊢ Ⅎ ℎ ( 𝐺 ∘ 𝑣 ) |
| 230 |
29 229
|
nfco |
⊢ Ⅎ ℎ ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) |
| 231 |
|
nfcv |
⊢ Ⅎ ℎ 𝑖 |
| 232 |
230 231
|
nffv |
⊢ Ⅎ ℎ ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) |
| 233 |
|
nfcv |
⊢ Ⅎ ℎ 𝐴 |
| 234 |
|
nfcv |
⊢ Ⅎ ℎ 𝑇 |
| 235 |
|
nfcv |
⊢ Ⅎ ℎ 0 |
| 236 |
|
nfcv |
⊢ Ⅎ ℎ ≤ |
| 237 |
|
nfcv |
⊢ Ⅎ ℎ 𝑡 |
| 238 |
232 237
|
nffv |
⊢ Ⅎ ℎ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) |
| 239 |
235 236 238
|
nfbr |
⊢ Ⅎ ℎ 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) |
| 240 |
|
nfcv |
⊢ Ⅎ ℎ 1 |
| 241 |
238 236 240
|
nfbr |
⊢ Ⅎ ℎ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 |
| 242 |
239 241
|
nfan |
⊢ Ⅎ ℎ ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 243 |
234 242
|
nfralw |
⊢ Ⅎ ℎ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) |
| 244 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑣 ‘ 𝑖 ) |
| 245 |
|
nfcv |
⊢ Ⅎ ℎ < |
| 246 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝐸 / 𝑀 ) |
| 247 |
238 245 246
|
nfbr |
⊢ Ⅎ ℎ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) |
| 248 |
244 247
|
nfralw |
⊢ Ⅎ ℎ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) |
| 249 |
|
nfcv |
⊢ Ⅎ ℎ ( 𝑇 ∖ 𝑈 ) |
| 250 |
|
nfcv |
⊢ Ⅎ ℎ ( 1 − ( 𝐸 / 𝑀 ) ) |
| 251 |
250 245 238
|
nfbr |
⊢ Ⅎ ℎ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) |
| 252 |
249 251
|
nfralw |
⊢ Ⅎ ℎ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) |
| 253 |
243 248 252
|
nf3an |
⊢ Ⅎ ℎ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 254 |
|
nfcv |
⊢ Ⅎ 𝑡 ℎ |
| 255 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑙 |
| 256 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑅 |
| 257 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) |
| 258 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) |
| 259 |
|
nfra1 |
⊢ Ⅎ 𝑡 ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) |
| 260 |
257 258 259
|
nf3an |
⊢ Ⅎ 𝑡 ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) |
| 261 |
|
nfcv |
⊢ Ⅎ 𝑡 𝐴 |
| 262 |
260 261
|
nfrabw |
⊢ Ⅎ 𝑡 { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } |
| 263 |
256 262
|
nfmpt |
⊢ Ⅎ 𝑡 ( 𝑤 ∈ 𝑅 ↦ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ 𝑤 ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ) |
| 264 |
6 263
|
nfcxfr |
⊢ Ⅎ 𝑡 𝐺 |
| 265 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑣 |
| 266 |
264 265
|
nfco |
⊢ Ⅎ 𝑡 ( 𝐺 ∘ 𝑣 ) |
| 267 |
255 266
|
nfco |
⊢ Ⅎ 𝑡 ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) |
| 268 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑖 |
| 269 |
267 268
|
nffv |
⊢ Ⅎ 𝑡 ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) |
| 270 |
254 269
|
nfeq |
⊢ Ⅎ 𝑡 ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) |
| 271 |
|
fveq1 |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ℎ ‘ 𝑡 ) = ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 272 |
271
|
breq2d |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( 0 ≤ ( ℎ ‘ 𝑡 ) ↔ 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 273 |
271
|
breq1d |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ( ℎ ‘ 𝑡 ) ≤ 1 ↔ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) |
| 274 |
272 273
|
anbi12d |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 275 |
270 274
|
ralbid |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) ) |
| 276 |
271
|
breq1d |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 277 |
270 276
|
ralbid |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 278 |
271
|
breq2d |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 279 |
270 278
|
ralbid |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 280 |
275 277 279
|
3anbi123d |
⊢ ( ℎ = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) → ( ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 281 |
232 233 253 280
|
elrabf |
⊢ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } ↔ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ 𝐴 ∧ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 282 |
281
|
simprbi |
⊢ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 283 |
282
|
simp2d |
⊢ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
| 284 |
227 283
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 285 |
214 284
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) |
| 286 |
264
|
nfrn |
⊢ Ⅎ 𝑡 ran 𝐺 |
| 287 |
255 286
|
nffn |
⊢ Ⅎ 𝑡 𝑙 Fn ran 𝐺 |
| 288 |
|
nfv |
⊢ Ⅎ 𝑡 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 289 |
286 288
|
nfralw |
⊢ Ⅎ 𝑡 ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) |
| 290 |
287 289
|
nfan |
⊢ Ⅎ 𝑡 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) |
| 291 |
2 290
|
nfan |
⊢ Ⅎ 𝑡 ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) |
| 292 |
|
nfv |
⊢ Ⅎ 𝑡 𝑖 ∈ ( 1 ... 𝑀 ) |
| 293 |
291 292
|
nfan |
⊢ Ⅎ 𝑡 ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 294 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝐵 ) → 𝐵 ⊆ ( 𝑇 ∖ 𝑈 ) ) |
| 295 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝐵 ) → 𝑡 ∈ 𝐵 ) |
| 296 |
294 295
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝐵 ) → 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) |
| 297 |
282
|
simp3d |
⊢ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ { ℎ ∈ 𝐴 ∣ ( ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ℎ ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ℎ ‘ 𝑡 ) ) } → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 298 |
227 297
|
biimtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺 ∘ 𝑣 ) ‘ 𝑖 ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 299 |
214 298
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 300 |
299
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑇 ∖ 𝑈 ) ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 301 |
296 300
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ 𝐵 ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 302 |
301
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑡 ∈ 𝐵 → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 303 |
293 302
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 304 |
285 303
|
jca |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 305 |
304
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 306 |
194 305
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 307 |
|
feq1 |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ↔ ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) ) |
| 308 |
|
nfcv |
⊢ Ⅎ 𝑡 𝑥 |
| 309 |
308 267
|
nfeq |
⊢ Ⅎ 𝑡 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) |
| 310 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( 𝑥 ‘ 𝑖 ) = ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ) |
| 311 |
310
|
fveq1d |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) |
| 312 |
311
|
breq1d |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 313 |
309 312
|
ralbid |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) ) |
| 314 |
311
|
breq2d |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 315 |
309 314
|
ralbid |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ↔ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 316 |
313 315
|
anbi12d |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 317 |
316
|
ralbidv |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 318 |
307 317
|
anbi12d |
⊢ ( 𝑥 = ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) → ( ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ↔ ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 319 |
318
|
spcegv |
⊢ ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ∈ V → ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺 ∘ 𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) ) |
| 320 |
27 306 319
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙 ‘ 𝑏 ) ∈ 𝑏 ) ) ) → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |
| 321 |
16 320
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣 ‘ 𝑖 ) ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ 𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) |