Metamath Proof Explorer


Theorem stoweidlem31

Description: This lemma is used to prove that there exists a function x as in the proof of Lemma 2 in BrosowskiDeutsh p. 91: assuming that R is a finite subset of V , x indexes a finite set of functions in the subalgebra (of the Stone Weierstrass theorem), such that for all i ranging in the finite indexing set, 0 ≤ x_i ≤ 1, x_i < ε / m on V(t_i), and x_i > 1 - ε / m on B . Here M is used to represent m in the paper, E is used to represent ε in the paper, v_i is used to represent V(t_i). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem31.1 𝜑
stoweidlem31.2 𝑡 𝜑
stoweidlem31.3 𝑤 𝜑
stoweidlem31.4 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
stoweidlem31.5 𝑉 = { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) }
stoweidlem31.6 𝐺 = ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
stoweidlem31.7 ( 𝜑𝑅𝑉 )
stoweidlem31.8 ( 𝜑𝑀 ∈ ℕ )
stoweidlem31.9 ( 𝜑𝑣 : ( 1 ... 𝑀 ) –1-1-onto𝑅 )
stoweidlem31.10 ( 𝜑𝐸 ∈ ℝ+ )
stoweidlem31.11 ( 𝜑𝐵 ⊆ ( 𝑇𝑈 ) )
stoweidlem31.12 ( 𝜑𝑉 ∈ V )
stoweidlem31.13 ( 𝜑𝐴 ∈ V )
stoweidlem31.14 ( 𝜑 → ran 𝐺 ∈ Fin )
Assertion stoweidlem31 ( 𝜑 → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem31.1 𝜑
2 stoweidlem31.2 𝑡 𝜑
3 stoweidlem31.3 𝑤 𝜑
4 stoweidlem31.4 𝑌 = { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
5 stoweidlem31.5 𝑉 = { 𝑤𝐽 ∣ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) }
6 stoweidlem31.6 𝐺 = ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
7 stoweidlem31.7 ( 𝜑𝑅𝑉 )
8 stoweidlem31.8 ( 𝜑𝑀 ∈ ℕ )
9 stoweidlem31.9 ( 𝜑𝑣 : ( 1 ... 𝑀 ) –1-1-onto𝑅 )
10 stoweidlem31.10 ( 𝜑𝐸 ∈ ℝ+ )
11 stoweidlem31.11 ( 𝜑𝐵 ⊆ ( 𝑇𝑈 ) )
12 stoweidlem31.12 ( 𝜑𝑉 ∈ V )
13 stoweidlem31.13 ( 𝜑𝐴 ∈ V )
14 stoweidlem31.14 ( 𝜑 → ran 𝐺 ∈ Fin )
15 fnchoice ( ran 𝐺 ∈ Fin → ∃ 𝑙 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) )
16 14 15 syl ( 𝜑 → ∃ 𝑙 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) )
17 vex 𝑙 ∈ V
18 12 7 ssexd ( 𝜑𝑅 ∈ V )
19 mptexg ( 𝑅 ∈ V → ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) ∈ V )
20 18 19 syl ( 𝜑 → ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) ∈ V )
21 6 20 eqeltrid ( 𝜑𝐺 ∈ V )
22 vex 𝑣 ∈ V
23 coexg ( ( 𝐺 ∈ V ∧ 𝑣 ∈ V ) → ( 𝐺𝑣 ) ∈ V )
24 21 22 23 sylancl ( 𝜑 → ( 𝐺𝑣 ) ∈ V )
25 coexg ( ( 𝑙 ∈ V ∧ ( 𝐺𝑣 ) ∈ V ) → ( 𝑙 ∘ ( 𝐺𝑣 ) ) ∈ V )
26 17 24 25 sylancr ( 𝜑 → ( 𝑙 ∘ ( 𝐺𝑣 ) ) ∈ V )
27 26 adantr ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ( 𝑙 ∘ ( 𝐺𝑣 ) ) ∈ V )
28 simprl ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → 𝑙 Fn ran 𝐺 )
29 nfcv 𝑙
30 nfcv 𝑅
31 nfrab1 { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) }
32 30 31 nfmpt ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
33 6 32 nfcxfr 𝐺
34 33 nfrn ran 𝐺
35 29 34 nffn 𝑙 Fn ran 𝐺
36 nfv ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 )
37 34 36 nfralw 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 )
38 35 37 nfan ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
39 1 38 nfan ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) )
40 fvelrnb ( 𝑙 Fn ran 𝐺 → ( ∈ ran 𝑙 ↔ ∃ 𝑏 ∈ ran 𝐺 ( 𝑙𝑏 ) = ) )
41 28 40 syl ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ( ∈ ran 𝑙 ↔ ∃ 𝑏 ∈ ran 𝐺 ( 𝑙𝑏 ) = ) )
42 41 biimpa ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ∃ 𝑏 ∈ ran 𝐺 ( 𝑙𝑏 ) = )
43 nfv 𝑏 𝜑
44 nfv 𝑏 𝑙 Fn ran 𝐺
45 nfra1 𝑏𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 )
46 44 45 nfan 𝑏 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
47 43 46 nfan 𝑏 ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) )
48 nfv 𝑏 ∈ ran 𝑙
49 47 48 nfan 𝑏 ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 )
50 simp3 ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) = ) → ( 𝑙𝑏 ) = )
51 simp1ll ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) = ) → 𝜑 )
52 simplrr ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
53 52 3ad2ant1 ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) = ) → ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
54 simp2 ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) = ) → 𝑏 ∈ ran 𝐺 )
55 simp3 ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → 𝑏 ∈ ran 𝐺 )
56 3simpc ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) )
57 simpr ( ( 𝜑𝑏 ∈ ran 𝐺 ) → 𝑏 ∈ ran 𝐺 )
58 rabexg ( 𝐴 ∈ V → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V )
59 13 58 syl ( 𝜑 → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V )
60 59 a1d ( 𝜑 → ( 𝑤𝑅 → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V ) )
61 3 60 ralrimi ( 𝜑 → ∀ 𝑤𝑅 { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V )
62 6 fnmpt ( ∀ 𝑤𝑅 { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V → 𝐺 Fn 𝑅 )
63 61 62 syl ( 𝜑𝐺 Fn 𝑅 )
64 63 adantr ( ( 𝜑𝑏 ∈ ran 𝐺 ) → 𝐺 Fn 𝑅 )
65 fvelrnb ( 𝐺 Fn 𝑅 → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑢𝑅 ( 𝐺𝑢 ) = 𝑏 ) )
66 nfmpt1 𝑤 ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
67 6 66 nfcxfr 𝑤 𝐺
68 nfcv 𝑤 𝑢
69 67 68 nffv 𝑤 ( 𝐺𝑢 )
70 nfcv 𝑤 𝑏
71 69 70 nfeq 𝑤 ( 𝐺𝑢 ) = 𝑏
72 nfv 𝑢 ( 𝐺𝑤 ) = 𝑏
73 fveq2 ( 𝑢 = 𝑤 → ( 𝐺𝑢 ) = ( 𝐺𝑤 ) )
74 73 eqeq1d ( 𝑢 = 𝑤 → ( ( 𝐺𝑢 ) = 𝑏 ↔ ( 𝐺𝑤 ) = 𝑏 ) )
75 71 72 74 cbvrexw ( ∃ 𝑢𝑅 ( 𝐺𝑢 ) = 𝑏 ↔ ∃ 𝑤𝑅 ( 𝐺𝑤 ) = 𝑏 )
76 65 75 bitrdi ( 𝐺 Fn 𝑅 → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤𝑅 ( 𝐺𝑤 ) = 𝑏 ) )
77 64 76 syl ( ( 𝜑𝑏 ∈ ran 𝐺 ) → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤𝑅 ( 𝐺𝑤 ) = 𝑏 ) )
78 57 77 mpbid ( ( 𝜑𝑏 ∈ ran 𝐺 ) → ∃ 𝑤𝑅 ( 𝐺𝑤 ) = 𝑏 )
79 67 nfrn 𝑤 ran 𝐺
80 79 nfcri 𝑤 𝑏 ∈ ran 𝐺
81 3 80 nfan 𝑤 ( 𝜑𝑏 ∈ ran 𝐺 )
82 nfv 𝑤 𝑏 ≠ ∅
83 simp3 ( ( 𝜑𝑤𝑅 ∧ ( 𝐺𝑤 ) = 𝑏 ) → ( 𝐺𝑤 ) = 𝑏 )
84 simpr ( ( 𝜑𝑤𝑅 ) → 𝑤𝑅 )
85 13 adantr ( ( 𝜑𝑤𝑅 ) → 𝐴 ∈ V )
86 85 58 syl ( ( 𝜑𝑤𝑅 ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V )
87 6 fvmpt2 ( ( 𝑤𝑅 ∧ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V ) → ( 𝐺𝑤 ) = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
88 84 86 87 syl2anc ( ( 𝜑𝑤𝑅 ) → ( 𝐺𝑤 ) = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
89 7 sselda ( ( 𝜑𝑤𝑅 ) → 𝑤𝑉 )
90 5 rabeq2i ( 𝑤𝑉 ↔ ( 𝑤𝐽 ∧ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) ) )
91 89 90 sylib ( ( 𝜑𝑤𝑅 ) → ( 𝑤𝐽 ∧ ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) ) )
92 91 simprd ( ( 𝜑𝑤𝑅 ) → ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) )
93 8 nnrpd ( 𝜑𝑀 ∈ ℝ+ )
94 10 93 rpdivcld ( 𝜑 → ( 𝐸 / 𝑀 ) ∈ ℝ+ )
95 94 adantr ( ( 𝜑𝑤𝑅 ) → ( 𝐸 / 𝑀 ) ∈ ℝ+ )
96 breq2 ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ( 𝑡 ) < 𝑒 ↔ ( 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
97 96 ralbidv ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ↔ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
98 oveq2 ( 𝑒 = ( 𝐸 / 𝑀 ) → ( 1 − 𝑒 ) = ( 1 − ( 𝐸 / 𝑀 ) ) )
99 98 breq1d ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ( 1 − 𝑒 ) < ( 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) )
100 99 ralbidv ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) )
101 97 100 3anbi23d ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) )
102 101 rexbidv ( 𝑒 = ( 𝐸 / 𝑀 ) → ( ∃ 𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) ↔ ∃ 𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) )
103 102 rspccva ( ( ∀ 𝑒 ∈ ℝ+𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < 𝑒 ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − 𝑒 ) < ( 𝑡 ) ) ∧ ( 𝐸 / 𝑀 ) ∈ ℝ+ ) → ∃ 𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) )
104 92 95 103 syl2anc ( ( 𝜑𝑤𝑅 ) → ∃ 𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) )
105 nfv 𝑤𝑅
106 1 105 nfan ( 𝜑𝑤𝑅 )
107 nfcv
108 31 107 nfne { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ≠ ∅
109 3simpc ( ( ( 𝜑𝑤𝑅 ) ∧ 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) → ( 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) )
110 rabid ( ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ↔ ( 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) )
111 109 110 sylibr ( ( ( 𝜑𝑤𝑅 ) ∧ 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) → ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
112 ne0i ( ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ≠ ∅ )
113 111 112 syl ( ( ( 𝜑𝑤𝑅 ) ∧ 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ≠ ∅ )
114 113 3exp ( ( 𝜑𝑤𝑅 ) → ( 𝐴 → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ≠ ∅ ) ) )
115 106 108 114 rexlimd ( ( 𝜑𝑤𝑅 ) → ( ∃ 𝐴 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ≠ ∅ ) )
116 104 115 mpd ( ( 𝜑𝑤𝑅 ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ≠ ∅ )
117 88 116 eqnetrd ( ( 𝜑𝑤𝑅 ) → ( 𝐺𝑤 ) ≠ ∅ )
118 117 3adant3 ( ( 𝜑𝑤𝑅 ∧ ( 𝐺𝑤 ) = 𝑏 ) → ( 𝐺𝑤 ) ≠ ∅ )
119 83 118 eqnetrrd ( ( 𝜑𝑤𝑅 ∧ ( 𝐺𝑤 ) = 𝑏 ) → 𝑏 ≠ ∅ )
120 119 3adant1r ( ( ( 𝜑𝑏 ∈ ran 𝐺 ) ∧ 𝑤𝑅 ∧ ( 𝐺𝑤 ) = 𝑏 ) → 𝑏 ≠ ∅ )
121 120 3exp ( ( 𝜑𝑏 ∈ ran 𝐺 ) → ( 𝑤𝑅 → ( ( 𝐺𝑤 ) = 𝑏𝑏 ≠ ∅ ) ) )
122 81 82 121 rexlimd ( ( 𝜑𝑏 ∈ ran 𝐺 ) → ( ∃ 𝑤𝑅 ( 𝐺𝑤 ) = 𝑏𝑏 ≠ ∅ ) )
123 78 122 mpd ( ( 𝜑𝑏 ∈ ran 𝐺 ) → 𝑏 ≠ ∅ )
124 123 3adant2 ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → 𝑏 ≠ ∅ )
125 rspa ( ( ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
126 56 124 125 sylc ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑙𝑏 ) ∈ 𝑏 )
127 55 126 jca ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 ) )
128 vex 𝑏 ∈ V
129 6 elrnmpt ( 𝑏 ∈ V → ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤𝑅 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) )
130 128 129 ax-mp ( 𝑏 ∈ ran 𝐺 ↔ ∃ 𝑤𝑅 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
131 55 130 sylib ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ∃ 𝑤𝑅 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
132 nfv 𝑤 ( 𝑙𝑏 ) ∈ 𝑏
133 80 132 nfan 𝑤 ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 )
134 nfv 𝑤 ( 𝑙𝑏 ) ∈ 𝑌
135 simp1r ( ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑤𝑅𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → ( 𝑙𝑏 ) ∈ 𝑏 )
136 simp3 ( ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑤𝑅𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
137 simpl ( ( ( 𝑙𝑏 ) ∈ 𝑏𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → ( 𝑙𝑏 ) ∈ 𝑏 )
138 simpr ( ( ( 𝑙𝑏 ) ∈ 𝑏𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
139 137 138 eleqtrd ( ( ( 𝑙𝑏 ) ∈ 𝑏𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
140 elrabi ( ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ( 𝑙𝑏 ) ∈ 𝐴 )
141 fveq1 ( = ( 𝑙𝑏 ) → ( 𝑡 ) = ( ( 𝑙𝑏 ) ‘ 𝑡 ) )
142 141 breq2d ( = ( 𝑙𝑏 ) → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ) )
143 141 breq1d ( = ( 𝑙𝑏 ) → ( ( 𝑡 ) ≤ 1 ↔ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) )
144 142 143 anbi12d ( = ( 𝑙𝑏 ) → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) )
145 144 ralbidv ( = ( 𝑙𝑏 ) → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) )
146 141 breq1d ( = ( 𝑙𝑏 ) → ( ( 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ( ( 𝑙𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
147 146 ralbidv ( = ( 𝑙𝑏 ) → ( ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡𝑤 ( ( 𝑙𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
148 141 breq2d ( = ( 𝑙𝑏 ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙𝑏 ) ‘ 𝑡 ) ) )
149 148 ralbidv ( = ( 𝑙𝑏 ) → ( ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙𝑏 ) ‘ 𝑡 ) ) )
150 145 147 149 3anbi123d ( = ( 𝑙𝑏 ) → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( ( 𝑙𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙𝑏 ) ‘ 𝑡 ) ) ) )
151 150 elrab ( ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ↔ ( ( 𝑙𝑏 ) ∈ 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( ( 𝑙𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙𝑏 ) ‘ 𝑡 ) ) ) )
152 151 simprbi ( ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ( ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( ( 𝑙𝑏 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑙𝑏 ) ‘ 𝑡 ) ) )
153 152 simp1d ( ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) )
154 145 elrab ( ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } ↔ ( ( 𝑙𝑏 ) ∈ 𝐴 ∧ ∀ 𝑡𝑇 ( 0 ≤ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ∧ ( ( 𝑙𝑏 ) ‘ 𝑡 ) ≤ 1 ) ) )
155 140 153 154 sylanbrc ( ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } )
156 139 155 syl ( ( ( 𝑙𝑏 ) ∈ 𝑏𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → ( 𝑙𝑏 ) ∈ { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) } )
157 156 4 eleqtrrdi ( ( ( 𝑙𝑏 ) ∈ 𝑏𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → ( 𝑙𝑏 ) ∈ 𝑌 )
158 135 136 157 syl2anc ( ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑤𝑅𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) → ( 𝑙𝑏 ) ∈ 𝑌 )
159 158 3exp ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 ) → ( 𝑤𝑅 → ( 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ( 𝑙𝑏 ) ∈ 𝑌 ) ) )
160 133 134 159 rexlimd ( ( 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) ∈ 𝑏 ) → ( ∃ 𝑤𝑅 𝑏 = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ( 𝑙𝑏 ) ∈ 𝑌 ) )
161 127 131 160 sylc ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑙𝑏 ) ∈ 𝑌 )
162 51 53 54 161 syl3anc ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) = ) → ( 𝑙𝑏 ) ∈ 𝑌 )
163 50 162 eqeltrrd ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) ∧ 𝑏 ∈ ran 𝐺 ∧ ( 𝑙𝑏 ) = ) → 𝑌 )
164 163 3exp ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ( 𝑏 ∈ ran 𝐺 → ( ( 𝑙𝑏 ) = 𝑌 ) ) )
165 49 164 reximdai ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ( ∃ 𝑏 ∈ ran 𝐺 ( 𝑙𝑏 ) = → ∃ 𝑏 ∈ ran 𝐺 𝑌 ) )
166 42 165 mpd ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ∃ 𝑏 ∈ ran 𝐺 𝑌 )
167 nfv 𝑏 𝑌
168 idd ( 𝑏 ∈ ran 𝐺 → ( 𝑌𝑌 ) )
169 168 a1i ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ( 𝑏 ∈ ran 𝐺 → ( 𝑌𝑌 ) ) )
170 49 167 169 rexlimd ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → ( ∃ 𝑏 ∈ ran 𝐺 𝑌𝑌 ) )
171 166 170 mpd ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ ∈ ran 𝑙 ) → 𝑌 )
172 171 ex ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ( ∈ ran 𝑙𝑌 ) )
173 39 172 ralrimi ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ∀ ∈ ran 𝑙 𝑌 )
174 dfss3 ( ran 𝑙𝑌 ↔ ∀ 𝑧 ∈ ran 𝑙 𝑧𝑌 )
175 nfrab1 { 𝐴 ∣ ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) }
176 4 175 nfcxfr 𝑌
177 176 nfcri 𝑧𝑌
178 nfv 𝑧 𝑌
179 eleq1 ( 𝑧 = → ( 𝑧𝑌𝑌 ) )
180 177 178 179 cbvralw ( ∀ 𝑧 ∈ ran 𝑙 𝑧𝑌 ↔ ∀ ∈ ran 𝑙 𝑌 )
181 174 180 bitri ( ran 𝑙𝑌 ↔ ∀ ∈ ran 𝑙 𝑌 )
182 173 181 sylibr ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ran 𝑙𝑌 )
183 df-f ( 𝑙 : ran 𝐺𝑌 ↔ ( 𝑙 Fn ran 𝐺 ∧ ran 𝑙𝑌 ) )
184 28 182 183 sylanbrc ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → 𝑙 : ran 𝐺𝑌 )
185 dffn3 ( 𝐺 Fn 𝑅𝐺 : 𝑅 ⟶ ran 𝐺 )
186 63 185 sylib ( 𝜑𝐺 : 𝑅 ⟶ ran 𝐺 )
187 186 adantr ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → 𝐺 : 𝑅 ⟶ ran 𝐺 )
188 f1of ( 𝑣 : ( 1 ... 𝑀 ) –1-1-onto𝑅𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 )
189 9 188 syl ( 𝜑𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 )
190 189 adantr ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 )
191 fco ( ( 𝐺 : 𝑅 ⟶ ran 𝐺𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅 ) → ( 𝐺𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 )
192 187 190 191 syl2anc ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ( 𝐺𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 )
193 fco ( ( 𝑙 : ran 𝐺𝑌 ∧ ( 𝐺𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺 ) → ( 𝑙 ∘ ( 𝐺𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 )
194 184 192 193 syl2anc ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ( 𝑙 ∘ ( 𝐺𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 )
195 fvco3 ( ( ( 𝐺𝑣 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐺𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) = ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) )
196 192 195 sylan ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) = ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) )
197 simpll ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 )
198 simplrr ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
199 192 ffvelrnda ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 )
200 simp3 ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 )
201 nfv 𝑏 ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺
202 43 45 201 nf3an 𝑏 ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 )
203 nfv 𝑏 ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 )
204 202 203 nfim 𝑏 ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) )
205 eleq1 ( 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ( 𝑏 ∈ ran 𝐺 ↔ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) )
206 205 3anbi3d ( 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) ↔ ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) ) )
207 fveq2 ( 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ( 𝑙𝑏 ) = ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) )
208 id ( 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) → 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) )
209 207 208 eleq12d ( 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ( ( 𝑙𝑏 ) ∈ 𝑏 ↔ ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) )
210 206 209 imbi12d ( 𝑏 = ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ( ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ 𝑏 ∈ ran 𝐺 ) → ( 𝑙𝑏 ) ∈ 𝑏 ) ↔ ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ) )
211 204 210 126 vtoclg1f ( ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 → ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) )
212 200 211 mpcom ( ( 𝜑 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ∧ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ∈ ran 𝐺 ) → ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) )
213 197 198 199 212 syl3anc ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑙 ‘ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) )
214 196 213 eqeltrd ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) )
215 fvco3 ( ( 𝑣 : ( 1 ... 𝑀 ) ⟶ 𝑅𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑣 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑣𝑖 ) ) )
216 189 215 sylan ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑣 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝑣𝑖 ) ) )
217 raleq ( 𝑤 = ( 𝑣𝑖 ) → ( ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
218 217 3anbi2d ( 𝑤 = ( 𝑣𝑖 ) → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ) )
219 218 rabbidv ( 𝑤 = ( 𝑣𝑖 ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
220 189 ffvelrnda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑣𝑖 ) ∈ 𝑅 )
221 13 adantr ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐴 ∈ V )
222 rabexg ( 𝐴 ∈ V → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V )
223 221 222 syl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ∈ V )
224 6 219 220 223 fvmptd3 ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝑣𝑖 ) ) = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
225 216 224 eqtrd ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑣 ) ‘ 𝑖 ) = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
226 225 adantlr ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺𝑣 ) ‘ 𝑖 ) = { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
227 226 eleq2d ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) ↔ ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ) )
228 nfcv 𝑣
229 33 228 nfco ( 𝐺𝑣 )
230 29 229 nfco ( 𝑙 ∘ ( 𝐺𝑣 ) )
231 nfcv 𝑖
232 230 231 nffv ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 )
233 nfcv 𝐴
234 nfcv 𝑇
235 nfcv 0
236 nfcv
237 nfcv 𝑡
238 232 237 nffv ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )
239 235 236 238 nfbr 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )
240 nfcv 1
241 238 236 240 nfbr ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1
242 239 241 nfan ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 )
243 234 242 nfralw 𝑡𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 )
244 nfcv ( 𝑣𝑖 )
245 nfcv <
246 nfcv ( 𝐸 / 𝑀 )
247 238 245 246 nfbr ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 )
248 244 247 nfralw 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 )
249 nfcv ( 𝑇𝑈 )
250 nfcv ( 1 − ( 𝐸 / 𝑀 ) )
251 250 245 238 nfbr ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )
252 249 251 nfralw 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 )
253 243 248 252 nf3an ( ∀ 𝑡𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
254 nfcv 𝑡
255 nfcv 𝑡 𝑙
256 nfcv 𝑡 𝑅
257 nfra1 𝑡𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 )
258 nfra1 𝑡𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 )
259 nfra1 𝑡𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 )
260 257 258 259 nf3an 𝑡 ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) )
261 nfcv 𝑡 𝐴
262 260 261 nfrabw 𝑡 { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) }
263 256 262 nfmpt 𝑡 ( 𝑤𝑅 ↦ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡𝑤 ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } )
264 6 263 nfcxfr 𝑡 𝐺
265 nfcv 𝑡 𝑣
266 264 265 nfco 𝑡 ( 𝐺𝑣 )
267 255 266 nfco 𝑡 ( 𝑙 ∘ ( 𝐺𝑣 ) )
268 nfcv 𝑡 𝑖
269 267 268 nffv 𝑡 ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 )
270 254 269 nfeq 𝑡 = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 )
271 fveq1 ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( 𝑡 ) = ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
272 271 breq2d ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( 0 ≤ ( 𝑡 ) ↔ 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
273 271 breq1d ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ( 𝑡 ) ≤ 1 ↔ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) )
274 272 273 anbi12d ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) )
275 270 274 ralbid ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ↔ ∀ 𝑡𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ) )
276 271 breq1d ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ( 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
277 270 276 ralbid ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
278 271 breq2d ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
279 270 278 ralbid ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ↔ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
280 275 277 279 3anbi123d ( = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) → ( ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) ↔ ( ∀ 𝑡𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) )
281 232 233 253 280 elrabf ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } ↔ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ 𝐴 ∧ ( ∀ 𝑡𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) )
282 281 simprbi ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ( ∀ 𝑡𝑇 ( 0 ≤ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ∧ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
283 282 simp2d ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
284 227 283 syl6bi ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
285 214 284 mpd ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) )
286 264 nfrn 𝑡 ran 𝐺
287 255 286 nffn 𝑡 𝑙 Fn ran 𝐺
288 nfv 𝑡 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 )
289 286 288 nfralw 𝑡𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 )
290 287 289 nfan 𝑡 ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) )
291 2 290 nfan 𝑡 ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) )
292 nfv 𝑡 𝑖 ∈ ( 1 ... 𝑀 )
293 291 292 nfan 𝑡 ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) )
294 11 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡𝐵 ) → 𝐵 ⊆ ( 𝑇𝑈 ) )
295 simpr ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡𝐵 ) → 𝑡𝐵 )
296 294 295 sseldd ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡𝐵 ) → 𝑡 ∈ ( 𝑇𝑈 ) )
297 282 simp3d ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ { 𝐴 ∣ ( ∀ 𝑡𝑇 ( 0 ≤ ( 𝑡 ) ∧ ( 𝑡 ) ≤ 1 ) ∧ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( 𝑡 ) ) } → ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
298 227 297 syl6bi ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ∈ ( ( 𝐺𝑣 ) ‘ 𝑖 ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
299 214 298 mpd ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡 ∈ ( 𝑇𝑈 ) ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
300 299 r19.21bi ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡 ∈ ( 𝑇𝑈 ) ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
301 296 300 syldan ( ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑡𝐵 ) → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
302 301 ex ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑡𝐵 → ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
303 293 302 ralrimi ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
304 285 303 jca ( ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
305 304 ralrimiva ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
306 194 305 jca ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) )
307 feq1 ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ↔ ( 𝑙 ∘ ( 𝐺𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ) )
308 nfcv 𝑡 𝑥
309 308 267 nfeq 𝑡 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) )
310 fveq1 ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( 𝑥𝑖 ) = ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) )
311 310 fveq1d ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ( 𝑥𝑖 ) ‘ 𝑡 ) = ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) )
312 311 breq1d ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
313 309 312 ralbid ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ↔ ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ) )
314 311 breq2d ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ↔ ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
315 309 314 ralbid ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ↔ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) )
316 313 315 anbi12d ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ↔ ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) )
317 316 ralbidv ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) )
318 307 317 anbi12d ( 𝑥 = ( 𝑙 ∘ ( 𝐺𝑣 ) ) → ( ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ) ↔ ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) )
319 318 spcegv ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ∈ V → ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( ( 𝑙 ∘ ( 𝐺𝑣 ) ) ‘ 𝑖 ) ‘ 𝑡 ) ) ) → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ) ) )
320 27 306 319 sylc ( ( 𝜑 ∧ ( 𝑙 Fn ran 𝐺 ∧ ∀ 𝑏 ∈ ran 𝐺 ( 𝑏 ≠ ∅ → ( 𝑙𝑏 ) ∈ 𝑏 ) ) ) → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ) )
321 16 320 exlimddv ( 𝜑 → ∃ 𝑥 ( 𝑥 : ( 1 ... 𝑀 ) ⟶ 𝑌 ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ( ∀ 𝑡 ∈ ( 𝑣𝑖 ) ( ( 𝑥𝑖 ) ‘ 𝑡 ) < ( 𝐸 / 𝑀 ) ∧ ∀ 𝑡𝐵 ( 1 − ( 𝐸 / 𝑀 ) ) < ( ( 𝑥𝑖 ) ‘ 𝑡 ) ) ) )